Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands - PubMed (original) (raw)
. 1990;30(13-14):1243-57.
doi: 10.1002/bip.360301309.
Affiliations
- PMID: 2085660
- DOI: 10.1002/bip.360301309
Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands
Venyaminov SYu et al. Biopolymers. 1990.
Abstract
Infrared spectra of the amino acid residues in H2O solution have been obtained in the 1800-1400-cm-1 region. It has been established that amino acid residues of arginine, asparagine, glutamine, aspartic and glutamic acids, lysine, tyrosine, histidine, and phenylalanine have intensive absorption in this spectral region. Infrared spectra for a set of model compounds have been measured. On the basis of these data, spectral parameters of amino acid residue absorption bands have been determined.
Similar articles
- Infrared absorbances of protein side chains.
Rahmelow K, Hübner W, Ackermann T. Rahmelow K, et al. Anal Biochem. 1998 Mar 1;257(1):1-11. doi: 10.1006/abio.1997.2502. Anal Biochem. 1998. PMID: 9512765 - Infrared spectra and molar absorption coefficients of the 20 alpha amino acids in aqueous solutions in the spectral range from 1800 to 500 cm(-1).
Wolpert M, Hellwig P. Wolpert M, et al. Spectrochim Acta A Mol Biomol Spectrosc. 2006 Jul;64(4):987-1001. doi: 10.1016/j.saa.2005.08.025. Epub 2006 Feb 7. Spectrochim Acta A Mol Biomol Spectrosc. 2006. PMID: 16458063 - The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components.
Seebach D, Beck AK, Bierbaum DJ. Seebach D, et al. Chem Biodivers. 2004 Aug;1(8):1111-239. doi: 10.1002/cbdv.200490087. Chem Biodivers. 2004. PMID: 17191902 Review. - The infrared absorption of amino acid side chains.
Barth A. Barth A. Prog Biophys Mol Biol. 2000;74(3-5):141-73. doi: 10.1016/s0079-6107(00)00021-3. Prog Biophys Mol Biol. 2000. PMID: 11226511 Review.
Cited by
- Cr(VI) removal performance from wastewater by microflora isolated from tannery effluents in a semi-arid environment: a SEM, EDX, FTIR and zeta potential study.
Aké AHJ, Rochdi N, Jemo M, Hafidi M, Ouhdouch Y, El Fels L. Aké AHJ, et al. Front Microbiol. 2024 Jul 1;15:1423741. doi: 10.3389/fmicb.2024.1423741. eCollection 2024. Front Microbiol. 2024. PMID: 39011144 Free PMC article. - Assessment of Physicochemical Characterization and Mineralization of Nanofibrous Scaffold Incorporated With Aspartic Acid for Dental Mineralization: An In Vitro Study.
Krishnan A, Raghu S, Arumugam P, Eswaramoorthy R. Krishnan A, et al. Cureus. 2024 Jun 5;16(6):e61741. doi: 10.7759/cureus.61741. eCollection 2024 Jun. Cureus. 2024. PMID: 38975499 Free PMC article. - The migration process and temperature effect of aqueous solutions contaminated by heavy metal ions in unsaturated silty soils.
Bai B, Bai F, Hou J. Bai B, et al. Heliyon. 2024 Apr 26;10(9):e30458. doi: 10.1016/j.heliyon.2024.e30458. eCollection 2024 May 15. Heliyon. 2024. PMID: 38720732 Free PMC article. - Cell Responses to Calcium- and Protein-Conditioned Titanium: An In Vitro Study.
Zhi Q, Zhang Y, Wei J, Lv X, Qiao S, Lai H. Zhi Q, et al. J Funct Biomater. 2023 May 1;14(5):253. doi: 10.3390/jfb14050253. J Funct Biomater. 2023. PMID: 37233363 Free PMC article. - Rational design of potent ultrashort antimicrobial peptides with programmable assembly into nanostructured hydrogels.
Cardoso P, Appiah Danso S, Hung A, Dekiwadia C, Pradhan N, Strachan J, McDonald B, Firipis K, White JF, Aburto-Medina A, Conn CE, Valéry C. Cardoso P, et al. Front Chem. 2023 Jan 13;10:1009468. doi: 10.3389/fchem.2022.1009468. eCollection 2022. Front Chem. 2023. PMID: 36712988 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources