MRI T2 Hypointensities in basal ganglia of premanifest Huntington's disease - PubMed (original) (raw)
MRI T2 Hypointensities in basal ganglia of premanifest Huntington's disease
Caroline K Jurgens et al. PLoS Curr. 2010.
Abstract
Increased iron levels have been demonstrated in the basal ganglia of manifest Huntington's disease (HD). An excess in iron accumulation correlates with MRI T2-weighted hypointensity. Determination of the amount of hypointensities in the basal ganglia in the premanifest phase of HD may give more insight in the role of iron in the pathogenesis of HD. Therefore, the present study assessed whether the degree of hypointensities on T2-w MRI in the basal ganglia of premanifest gene carriers differs from non-carriers. Seventeen HD gene carriers without clinical motor signs and 15 non-carriers underwent clinical evaluation and MRI scanning. The amount of T2-w hypointensities was determined using a computer-assisted quantitative method that classified each pixel in the basal ganglia as hypointense or not, resulting in a total of hypointense pixels for each individual. Carriers showed an increased amount of hypointensities in the basal ganglia compared to non-carriers. More hypointensities were furthermore associated with a higher UHDRS total motor score, a longer CAG repeat length and a greater probability of developing symptoms within 5 years. We concluded that the increased amount of hypointensities in the basal ganglia of premanifest carriers of the HD gene may reflect excessive iron deposition and a role for iron in the neuropathology of HD. Furthermore, this phenomenon is associated with clinical and biological disease characteristics. An increased amount of hypointensities on T2-w MRI in the basal ganglia may be considered a biomarker for HD.
Figures
Similar articles
- Characterization of multifocal T2*-weighted MRI hypointensities in the basal ganglia of elderly, community-dwelling subjects.
Glatz A, Valdés Hernández MC, Kiker AJ, Bastin ME, Deary IJ, Wardlaw JM. Glatz A, et al. Neuroimage. 2013 Nov 15;82:470-80. doi: 10.1016/j.neuroimage.2013.06.013. Epub 2013 Jun 12. Neuroimage. 2013. PMID: 23769704 Free PMC article. - Automated segmentation of multifocal basal ganglia T2*-weighted MRI hypointensities.
Glatz A, Bastin ME, Kiker AJ, Deary IJ, Wardlaw JM, Valdés Hernández MC. Glatz A, et al. Neuroimage. 2015 Jan 15;105:332-46. doi: 10.1016/j.neuroimage.2014.10.001. Epub 2014 Oct 14. Neuroimage. 2015. PMID: 25451469 Free PMC article. - Basal ganglia-cortical structural connectivity in Huntington's disease.
Novak MJ, Seunarine KK, Gibbard CR, McColgan P, Draganski B, Friston K, Clark CA, Tabrizi SJ. Novak MJ, et al. Hum Brain Mapp. 2015 May;36(5):1728-40. doi: 10.1002/hbm.22733. Epub 2015 Jan 30. Hum Brain Mapp. 2015. PMID: 25640796 Free PMC article. - Structural Magnetic Resonance Imaging in Huntington's Disease.
Wilson H, Dervenoulas G, Politis M. Wilson H, et al. Int Rev Neurobiol. 2018;142:335-380. doi: 10.1016/bs.irn.2018.09.006. Epub 2018 Oct 8. Int Rev Neurobiol. 2018. PMID: 30409258 Review. - The role of iron imaging in Huntington's disease.
van den Bogaard SJ, Dumas EM, Roos RA. van den Bogaard SJ, et al. Int Rev Neurobiol. 2013;110:241-50. doi: 10.1016/B978-0-12-410502-7.00011-9. Int Rev Neurobiol. 2013. PMID: 24209441 Review.
Cited by
- Neuroimaging, Urinary, and Plasma Biomarkers of Treatment Response in Huntington's Disease: Preclinical Evidence with the p75NTR Ligand LM11A-31.
Simmons DA, Mills BD, Butler Iii RR, Kuan J, McHugh TLM, Akers C, Zhou J, Syriani W, Grouban M, Zeineh M, Longo FM. Simmons DA, et al. Neurotherapeutics. 2021 Apr;18(2):1039-1063. doi: 10.1007/s13311-021-01023-8. Epub 2021 Mar 30. Neurotherapeutics. 2021. PMID: 33786806 Free PMC article. - A Critical Review of White Matter Changes in Huntington's Disease.
Casella C, Lipp I, Rosser A, Jones DK, Metzler-Baddeley C. Casella C, et al. Mov Disord. 2020 Aug;35(8):1302-1311. doi: 10.1002/mds.28109. Epub 2020 Jun 15. Mov Disord. 2020. PMID: 32537844 Free PMC article. Review. - [Hfeprotein impact on iron metabolism].
Kaczorowska-Hać B, Kaczor JJ. Kaczorowska-Hać B, et al. Dev Period Med. 2017;21(2):85-90. doi: 10.34763/devperiodmed.20172102.8590. Dev Period Med. 2017. PMID: 28796976 Free PMC article. Review. - Off-resonance saturation as an MRI method to quantify mineral- iron in the post-mortem brain.
Bossoni L, Hegeman-Kleinn I, van Duinen SG, Bulk M, Vroegindeweij LHP, Langendonk JG, Hirschler L, Webb A, van der Weerd L. Bossoni L, et al. Magn Reson Med. 2022 Mar;87(3):1276-1288. doi: 10.1002/mrm.29041. Epub 2021 Oct 15. Magn Reson Med. 2022. PMID: 34655092 Free PMC article. - Correlations of behavioral deficits with brain pathology assessed through longitudinal MRI and histopathology in the R6/2 mouse model of HD.
Rattray I, Smith E, Gale R, Matsumoto K, Bates GP, Modo M. Rattray I, et al. PLoS One. 2013 Apr 4;8(4):e60012. doi: 10.1371/journal.pone.0060012. Print 2013. PLoS One. 2013. PMID: 23593159 Free PMC article.
References
- Bates G, Harper PS, Jones L. Huntington's disease, Third ed. Oxford University Press, 2002.
- Berg D, Gerlach M, Youdim MB, et al. Brain iron pathways and their relevance to Parkinson's disease. J Neurochem 2001; 79:225-236. - PubMed
- Zecca L, Youdim MB, Riederer P, et al. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 2004; 5:863-873. - PubMed
- Gotz ME, Double K, Gerlach M, et al. The relevance of iron in the pathogenesis of Parkinson's disease. Ann N Y Acad Sci 2004; 1012:193-208. - PubMed
- Dexter DT, Carayon A, Javoy-Agid F, et al. Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia. Brain 1991; 114:1953-1975. - PubMed
LinkOut - more resources
Full Text Sources