Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis - PubMed (original) (raw)
Clinical Trial
. 2010 Nov 15;70(22):9003-11.
doi: 10.1158/0008-5472.CAN-10-2364. Epub 2010 Oct 8.
Ketan R Patel, Maria Viskaduraki, James A Crowell, Marjorie Perloff, Tristan D Booth, Grygoriy Vasilinin, Ananda Sen, Anna Maria Schinas, Gianfranca Piccirilli, Karen Brown, William P Steward, Andreas J Gescher, Dean E Brenner
Affiliations
- PMID: 20935227
- PMCID: PMC2982884
- DOI: 10.1158/0008-5472.CAN-10-2364
Clinical Trial
Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis
Victoria A Brown et al. Cancer Res. 2010.
Abstract
Resveratrol, a naturally occurring polyphenol, has cancer chemopreventive properties in preclinical models. It has been shown to downregulate the levels of insulin-like growth factor-1 (IGF-I) in rodents. The purpose of the study was to assess its safety, pharmacokinetics, and effects on circulating levels of IGF-I and IGF-binding protein-3 (IGFBP-3) after repeated dosing. Forty healthy volunteers ingested resveratrol at 0.5, 1.0, 2.5, or 5.0 g daily for 29 days. Levels of resveratrol and its metabolites were measured by high performance liquid chromatography-UV in plasma obtained before and up to 24 hours after a dose between days 21 and 28. IGF-I and IGFBP-3 were measured by ELISA in plasma taken predosing and on day 29. Resveratrol was safe, but the 2.5 and 5 g doses caused mild to moderate gastrointestinal symptoms. Resveratrol-3-O-sulfate, resveratrol-4'-O-glucuronide, and resveratrol-3-O-glucuronide were major plasma metabolites. Maximal plasma levels and areas under the concentration versus time curve for the metabolites dramatically exceeded those for resveratrol, in the case of areas under the concentration versus time curve, by up to 20.3-fold. Compared with predosing values, the ingestion of resveratrol caused a decrease in circulating IGF-I and IGFBP-3 (P<0.04 for both), respectively, in all volunteers. The decrease was most marked at the 2.5 g dose level. The results suggest that repeated administration of high doses of resveratrol generates micromolar concentrations of parent and much higher levels of glucuronide and sulfate conjugates in the plasma. The observed decrease in circulating IGF-I and IGFBP-3 might contribute to cancer chemopreventive activity.
Trial registration: ClinicalTrials.gov NCT00098969.
Copyright © 2010 AACR.
Figures
Figure 1
Mean plasma concentrations of resveratrol (A),resveratrol-4′-_O_-glucuronide (B), resveratrol-3-_O_-glucuronide (C) and resveratrol-3-_O_-sulfate (D) versus time in healthy volunteers after the last of between 21 and 28 daily doses of resveratrol at either 0.5g (black, closed circles), 1g (green, open circles), 2.5g (blue, squares) or 5g (red, triangles). Values are the mean±SD of 10 volunteers per dose level. The range of coefficients of variation (as % of the mean) for the individual data points is shown in brackets.
Figure 2
Relationship between dose of resveratrol and maximal plasma concentration (Cmax) (A) or area under the plasma concentration versus time curve (AUClast) (B) for resveratrol (black, rhombi), resveratrol-4′-_O_-glucuronide (red, squares), resveratrol-3-_O_-glucuronide (green, triangles) and resveratrol-3-_O_-sulfate (blue, crosses) in healthy volunteers, after a dose of resveratrol at either 0.5, 1, 2.5 or 5g ingested on between day 21 and 28 of daily dosing. Values are the mean of 10 volunteers for each dose level. The range of coefficients of variation (as % of the mean) for individual data points is shown in brackets.
Figure 3
Circulating levels of IGF-1 (A) and IGFBP-3 (B) in individual healthy volunteers before and after consumption of resveratrol at 0.5, 1.0, 2.5 or 5.0g daily for 28 days. Results of the statistical analysis by paired t-test, i.e. mean differences between pre- and post-intervention levels (pre minus post values in ng/mL), 95% confidence intervals (in brackets) and P values, are shown for each group of 10 individuals below the graphs. Negative values signify an increase rather than decrease in levels. Blood samples were taken just prior to the first dose of resveratrol and on day 29.
Figure 4
Maximal plasma concentrations (Cmax) of resveratrol (A), resveratrol-4′-_O_-glucuronide (B), resveratrol-3-_O_-glucuronide (C) and resveratrol-3-_O_-sulfate (D) in healthy volunteers who received either a single dose (open bars) or between 21 and 28 daily doses (closed bars) of resveratrol at either 0.5, 1, 2.5 or 5 g. Single dose results have been published previously (9). Values are the mean+SD of 10 volunteers at each dose level. Asterisks indicate *P<0.05,**P=0.01, ***P=0.001 and ****P<0.0005.
Similar articles
- Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients.
Patel KR, Brown VA, Jones DJ, Britton RG, Hemingway D, Miller AS, West KP, Booth TD, Perloff M, Crowell JA, Brenner DE, Steward WP, Gescher AJ, Brown K. Patel KR, et al. Cancer Res. 2010 Oct 1;70(19):7392-9. doi: 10.1158/0008-5472.CAN-10-2027. Epub 2010 Sep 14. Cancer Res. 2010. PMID: 20841478 Free PMC article. Clinical Trial. - Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent.
Boocock DJ, Faust GE, Patel KR, Schinas AM, Brown VA, Ducharme MP, Booth TD, Crowell JA, Perloff M, Gescher AJ, Steward WP, Brenner DE. Boocock DJ, et al. Cancer Epidemiol Biomarkers Prev. 2007 Jun;16(6):1246-52. doi: 10.1158/1055-9965.EPI-07-0022. Cancer Epidemiol Biomarkers Prev. 2007. PMID: 17548692 Clinical Trial. - Resveratrol in the management of human cancer: how strong is the clinical evidence?
Gescher A, Steward WP, Brown K. Gescher A, et al. Ann N Y Acad Sci. 2013 Jul;1290:12-20. doi: 10.1111/nyas.12205. Ann N Y Acad Sci. 2013. PMID: 23855461 Review. - Resveratrol in human cancer chemoprevention--choosing the 'right' dose.
Scott E, Steward WP, Gescher AJ, Brown K. Scott E, et al. Mol Nutr Food Res. 2012 Jan;56(1):7-13. doi: 10.1002/mnfr.201100400. Epub 2011 Oct 7. Mol Nutr Food Res. 2012. PMID: 22218912 Review.
Cited by
- Potential therapeutic target for malignant paragangliomas: ATP synthase on the surface of paraganglioma cells.
Fliedner SM, Yang C, Thompson E, Abu-Asab M, Hsu CM, Lampert G, Eiden L, Tischler AS, Wesley R, Zhuang Z, Lehnert H, Pacak K. Fliedner SM, et al. Am J Cancer Res. 2015 Mar 15;5(4):1558-70. eCollection 2015. Am J Cancer Res. 2015. PMID: 26101719 Free PMC article. - Resveratrol treatment delays growth plate fusion and improves bone growth in female rabbits.
Karimian E, Tamm C, Chagin AS, Samuelsson K, Kjartansdóttir KR, Ohlsson C, Sävendahl L. Karimian E, et al. PLoS One. 2013 Jun 28;8(6):e67859. doi: 10.1371/journal.pone.0067859. Print 2013. PLoS One. 2013. PMID: 23840780 Free PMC article. - Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence.
Kotecha R, Takami A, Espinoza JL. Kotecha R, et al. Oncotarget. 2016 Aug 9;7(32):52517-52529. doi: 10.18632/oncotarget.9593. Oncotarget. 2016. PMID: 27232756 Free PMC article. Review. - Inhibitory effects of resveratrol on PDGF-BB-induced retinal pigment epithelial cell migration via PDGFRβ, PI3K/Akt and MAPK pathways.
Chan CM, Chang HH, Wang VC, Huang CL, Hung CF. Chan CM, et al. PLoS One. 2013;8(2):e56819. doi: 10.1371/journal.pone.0056819. Epub 2013 Feb 14. PLoS One. 2013. PMID: 23457620 Free PMC article. - Pulmonary metabolism of resveratrol: in vitro and in vivo evidence.
Sharan S, Nagar S. Sharan S, et al. Drug Metab Dispos. 2013 May;41(5):1163-9. doi: 10.1124/dmd.113.051326. Epub 2013 Mar 8. Drug Metab Dispos. 2013. PMID: 23474649 Free PMC article.
References
- Jang M, Cai L, Udeani GO, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997;275:218–20. - PubMed
- Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nature Rev Drug Discov. 2006;5:493–506. - PubMed
- Grifantini K. Understanding pathways of calorie restriction: a way to prevent cancer? J Nat Cancer Inst. 2008;100:619–21. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- N01CN25025/CA/NCI NIH HHS/United States
- C325/A6691/CRUK_/Cancer Research UK/United Kingdom
- NCI-N01-CN-25025/CN/NCI NIH HHS/United States
- UL1RR024986/RR/NCRR NIH HHS/United States
- N01 CN025025/CN/NCI NIH HHS/United States
- A6894/CRUK_/Cancer Research UK/United Kingdom
- UL1 RR024986/RR/NCRR NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous