Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of "germline genes" with stemness - PubMed (original) (raw)
. 2011 Feb 1;350(1):183-97.
doi: 10.1016/j.ydbio.2010.10.019. Epub 2010 Oct 29.
Affiliations
- PMID: 21036163
- DOI: 10.1016/j.ydbio.2010.10.019
Free article
Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of "germline genes" with stemness
Alexandre Alié et al. Dev Biol. 2011.
Free article
Abstract
Stem cells are essential for animal development and adult tissue homeostasis, and the quest for an ancestral gene fingerprint of stemness is a major challenge for evolutionary developmental biology. Recent studies have indicated that a series of genes, including the transposon silencer Piwi and the translational activator Vasa, specifically involved in germline determination and maintenance in classical bilaterian models (e.g., vertebrates, fly, nematode), are more generally expressed in adult multipotent stem cells in other animals like flatworms and hydras. Since the progeny of these multipotent stem cells includes both somatic and germinal derivatives, it remains unclear whether Vasa, Piwi, and associated genes like Bruno and PL10 were ancestrally linked to stemness, or to germinal potential. We have investigated the expression of Vasa, two Piwi paralogues, Bruno and PL10 in Pleurobrachia pileus, a member of the early-diverging phylum Ctenophora, the probable sister group of cnidarians. These genes were all expressed in the male and female germlines, and with the exception of one of the Piwi paralogues, they showed similar expression patterns within somatic territories (tentacle root, comb rows, aboral sensory complex). Cytological observations and EdU DNA-labelling and long-term retention experiments revealed concentrations of stem cells closely matching these gene expression areas. These stem cell pools are spatially restricted, and each specialised in the production of particular types of somatic cells. These data unveil important aspects of cell renewal within the ctenophore body and suggest that Piwi, Vasa, Bruno, and PL10 belong to a gene network ancestrally acting in two distinct contexts: (i) the germline and (ii) stem cells, whatever the nature of their progeny.
Copyright © 2010 Elsevier Inc. All rights reserved.
Similar articles
- Vasa unveils a common origin of germ cells and of somatic stem cells from the posterior growth zone in the polychaete Platynereis dumerilii.
Rebscher N, Zelada-González F, Banisch TU, Raible F, Arendt D. Rebscher N, et al. Dev Biol. 2007 Jun 15;306(2):599-611. doi: 10.1016/j.ydbio.2007.03.521. Epub 2007 Apr 1. Dev Biol. 2007. PMID: 17467683 - Vasa and the germ line lineage in a colonial urochordate.
Rosner A, Moiseeva E, Rinkevich Y, Lapidot Z, Rinkevich B. Rosner A, et al. Dev Biol. 2009 Jul 15;331(2):113-28. doi: 10.1016/j.ydbio.2009.04.025. Epub 2009 May 3. Dev Biol. 2009. PMID: 19406116 - Insights into the early evolution of SOX genes from expression analyses in a ctenophore.
Jager M, Quéinnec E, Chiori R, Le Guyader H, Manuel M. Jager M, et al. J Exp Zool B Mol Dev Evol. 2008 Dec 15;310(8):650-67. doi: 10.1002/jez.b.21244. J Exp Zool B Mol Dev Evol. 2008. PMID: 18942104 - Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective.
Rajasekhar VK, Begemann M. Rajasekhar VK, et al. Stem Cells. 2007 Oct;25(10):2498-510. doi: 10.1634/stemcells.2006-0608. Epub 2007 Jun 28. Stem Cells. 2007. PMID: 17600113 Review. - The stem cell system in demosponges: insights into the origin of somatic stem cells.
Funayama N. Funayama N. Dev Growth Differ. 2010 Jan;52(1):1-14. doi: 10.1111/j.1440-169X.2009.01162.x. Dev Growth Differ. 2010. PMID: 20078651 Review.
Cited by
- Closing the circle of germline and stem cells: the Primordial Stem Cell hypothesis.
Solana J. Solana J. Evodevo. 2013 Jan 8;4(1):2. doi: 10.1186/2041-9139-4-2. Evodevo. 2013. PMID: 23294912 Free PMC article. - Abscission Couples Cell Division to Embryonic Stem Cell Fate.
Chaigne A, Labouesse C, White IJ, Agnew M, Hannezo E, Chalut KJ, Paluch EK. Chaigne A, et al. Dev Cell. 2020 Oct 26;55(2):195-208.e5. doi: 10.1016/j.devcel.2020.09.001. Epub 2020 Sep 25. Dev Cell. 2020. PMID: 32979313 Free PMC article. - In vitro detection of marine invertebrate stem cells: utilizing molecular and cellular biology techniques and exploring markers.
Mohajer F, Khoradmehr A, Riazalhosseini B, Zendehboudi T, Nabipour I, Baghban N. Mohajer F, et al. Front Cell Dev Biol. 2024 Aug 22;12:1440091. doi: 10.3389/fcell.2024.1440091. eCollection 2024. Front Cell Dev Biol. 2024. PMID: 39239558 Free PMC article. Review. - Articulating the "stem cell niche" paradigm through the lens of non-model aquatic invertebrates.
Martinez P, Ballarin L, Ereskovsky AV, Gazave E, Hobmayer B, Manni L, Rottinger E, Sprecher SG, Tiozzo S, Varela-Coelho A, Rinkevich B. Martinez P, et al. BMC Biol. 2022 Jan 20;20(1):23. doi: 10.1186/s12915-022-01230-5. BMC Biol. 2022. PMID: 35057814 Free PMC article. Review. - Multiple Sox genes are expressed in stem cells or in differentiating neuro-sensory cells in the hydrozoan Clytia hemisphaerica.
Jager M, Quéinnec E, Le Guyader H, Manuel M. Jager M, et al. Evodevo. 2011 Jun 1;2:12. doi: 10.1186/2041-9139-2-12. Evodevo. 2011. PMID: 21631916 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical