Acute induction of Eya3 by late-night light stimulation triggers TSHβ expression in photoperiodism - PubMed (original) (raw)
. 2010 Dec 21;20(24):2199-206.
doi: 10.1016/j.cub.2010.11.038. Epub 2010 Dec 2.
Affiliations
- PMID: 21129973
- DOI: 10.1016/j.cub.2010.11.038
Free article
Acute induction of Eya3 by late-night light stimulation triggers TSHβ expression in photoperiodism
Koh-Hei Masumoto et al. Curr Biol. 2010.
Free article
Abstract
Living organisms detect seasonal changes in day length (photoperiod) [1-3] and alter their physiological functions accordingly to fit seasonal environmental changes. TSHβ, induced in the pars tuberalis (PT), plays a key role in the pathway that regulates vertebrate photoperiodism [4, 5]. However, the upstream inducers of TSHβ expression remain unknown. Here we performed genome-wide expression analysis of the PT under chronic short-day and long-day conditions in melatonin-proficient CBA/N mice, in which the photoperiodic TSHβ expression response is preserved [6]. This analysis identified "short-day" and "long-day" genes, including TSHβ, and further predicted the acute induction of long-day genes by late-night light stimulation. We verified this by advancing and extending the light period by 8 hr, which induced TSHβ expression within one day. In the following genome-wide expression analysis under this acute long-day condition, we searched for candidate upstream genes by looking for expression that preceded TSHβ's, and we identified the Eya3 gene. We demonstrated that Eya3 and its partner Six1 synergistically activate TSHβ expression and that this activation is further enhanced by Tef and Hlf. These results elucidate the comprehensive transcriptional photoperiodic response in the PT, revealing the complex regulation of TSHβ expression and unexpectedly rapid response to light changes in the mammalian photoperiodic system.
Comment in
- Photoperiodism: shall EYA compare thee to a summer's day?
Hut RA. Hut RA. Curr Biol. 2011 Jan 11;21(1):R22-5. doi: 10.1016/j.cub.2010.11.060. Curr Biol. 2011. PMID: 21215931
Similar articles
- A molecular switch for photoperiod responsiveness in mammals.
Dardente H, Wyse CA, Birnie MJ, Dupré SM, Loudon AS, Lincoln GA, Hazlerigg DG. Dardente H, et al. Curr Biol. 2010 Dec 21;20(24):2193-8. doi: 10.1016/j.cub.2010.10.048. Epub 2010 Dec 2. Curr Biol. 2010. PMID: 21129971 - Neuroendocrine correlates of the critical day length response in the Soay sheep.
Hazlerigg D, Lomet D, Lincoln G, Dardente H. Hazlerigg D, et al. J Neuroendocrinol. 2018 Sep;30(9):e12631. doi: 10.1111/jne.12631. Epub 2018 Aug 7. J Neuroendocrinol. 2018. PMID: 29972606 - Establishment of TSH β real-time monitoring system in mammalian photoperiodism.
Tsujino K, Narumi R, Masumoto KH, Susaki EA, Shinohara Y, Abe T, Iigo M, Wada A, Nagano M, Shigeyoshi Y, Ueda HR. Tsujino K, et al. Genes Cells. 2013 Jul;18(7):575-88. doi: 10.1111/gtc.12063. Epub 2013 Jun 12. Genes Cells. 2013. PMID: 23758111 Free PMC article. - What season is it anyway? Circadian tracking vs. photoperiodic anticipation in insects.
Bradshaw WE, Holzapfel CM. Bradshaw WE, et al. J Biol Rhythms. 2010 Jun;25(3):155-65. doi: 10.1177/0748730410365656. J Biol Rhythms. 2010. PMID: 20484687 Review. - Photoperiodism in higher vertebrates: an adaptive strategy in temporal environment.
Kumar V. Kumar V. Indian J Exp Biol. 1997 May;35(5):427-37. Indian J Exp Biol. 1997. PMID: 9378508 Review.
Cited by
- Latitudinal clines: an evolutionary view on biological rhythms.
Hut RA, Paolucci S, Dor R, Kyriacou CP, Daan S. Hut RA, et al. Proc Biol Sci. 2013 Jul 3;280(1765):20130433. doi: 10.1098/rspb.2013.0433. Print 2013 Aug 22. Proc Biol Sci. 2013. PMID: 23825204 Free PMC article. Review. - Photoperiod regulates corticosterone rhythms by altered adrenal sensitivity via melatonin-independent mechanisms in Fischer 344 rats and C57BL/6J mice.
Otsuka T, Goto M, Kawai M, Togo Y, Sato K, Katoh K, Furuse M, Yasuo S. Otsuka T, et al. PLoS One. 2012;7(6):e39090. doi: 10.1371/journal.pone.0039090. Epub 2012 Jun 15. PLoS One. 2012. PMID: 22720039 Free PMC article. - Photoperiod effects on corticosterone and seasonal clocks in cafeteria-induced obese fischer 344 rats are influenced by gut microbiota.
Arreaza-Gil V, Escobar-Martínez I, Soliz-Rueda JR, Suárez M, Muguerza B, Schellekens H, Torres-Fuentes C, Arola-Arnal A. Arreaza-Gil V, et al. Sci Rep. 2024 Sep 29;14(1):22560. doi: 10.1038/s41598-024-73289-9. Sci Rep. 2024. PMID: 39343766 Free PMC article. - Global climate change and invariable photoperiods: A mismatch that jeopardizes animal fitness.
Walker WH 2nd, Meléndez-Fernández OH, Nelson RJ, Reiter RJ. Walker WH 2nd, et al. Ecol Evol. 2019 Aug 16;9(17):10044-10054. doi: 10.1002/ece3.5537. eCollection 2019 Sep. Ecol Evol. 2019. PMID: 31534712 Free PMC article. Review. - RFRP Neurons - The Doorway to Understanding Seasonal Reproduction in Mammals.
Henningsen JB, Gauer F, Simonneaux V. Henningsen JB, et al. Front Endocrinol (Lausanne). 2016 May 3;7:36. doi: 10.3389/fendo.2016.00036. eCollection 2016. Front Endocrinol (Lausanne). 2016. PMID: 27199893 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous