A Bayesian evidence synthesis for estimating campylobacteriosis prevalence - PubMed (original) (raw)
Meta-Analysis
. 2011 Jul;31(7):1141-55.
doi: 10.1111/j.1539-6924.2010.01572.x. Epub 2011 Jan 13.
Affiliations
- PMID: 21231950
- DOI: 10.1111/j.1539-6924.2010.01572.x
Meta-Analysis
A Bayesian evidence synthesis for estimating campylobacteriosis prevalence
Isabelle Albert et al. Risk Anal. 2011 Jul.
Abstract
Stakeholders making decisions in public health and world trade need improved estimations of the burden-of-illness of foodborne infectious diseases. In this article, we propose a Bayesian meta-analysis or more precisely a Bayesian evidence synthesis to assess the burden-of-illness of campylobacteriosis in France. Using this case study, we investigate campylobacteriosis prevalence, as well as the probabilities of different events that guide the disease pathway, by (i) employing a Bayesian approach on French and foreign human studies (from active surveillance systems, laboratory surveys, physician surveys, epidemiological surveys, and so on) through the chain of events that occur during an episode of illness and (ii) including expert knowledge about this chain of events. We split the target population using an exhaustive and exclusive partition based on health status and the level of disease investigation. We assume an approximate multinomial model over this population partition. Thereby, each observed data set related to the partition brings information on the parameters of the multinomial model, improving burden-of-illness parameter estimates that can be deduced from the parameters of the basic multinomial model. This multinomial model serves as a core model to perform a Bayesian evidence synthesis. Expert knowledge is introduced by way of pseudo-data. The result is a global estimation of the burden-of-illness parameters with their accompanying uncertainty.
© 2011 Society for Risk Analysis.
Similar articles
- Bayesian temporal source attribution of foodborne zoonoses: Campylobacter in Finland and Norway.
Ranta J, Matjushin D, Virtanen T, Kuusi M, Viljugrein H, Hofshagen M, Hakkinen M. Ranta J, et al. Risk Anal. 2011 Jul;31(7):1156-71. doi: 10.1111/j.1539-6924.2010.01558.x. Epub 2011 Jan 13. Risk Anal. 2011. PMID: 21231942 - Harnessing the theoretical foundations of the exponential and beta-Poisson dose-response models to quantify parameter uncertainty using Markov Chain Monte Carlo.
Schmidt PJ, Pintar KD, Fazil AM, Topp E. Schmidt PJ, et al. Risk Anal. 2013 Sep;33(9):1677-93. doi: 10.1111/risa.12006. Epub 2013 Jan 11. Risk Anal. 2013. PMID: 23311599 - Quantitative risk assessment from farm to fork and beyond: a global Bayesian approach concerning food-borne diseases.
Albert I, Grenier E, Denis JB, Rousseau J. Albert I, et al. Risk Anal. 2008 Apr;28(2):557-71. doi: 10.1111/j.1539-6924.2008.01000.x. Risk Anal. 2008. PMID: 18419669 - Modelling study to estimate the health burden of foodborne diseases: cases, general practice consultations and hospitalisations in the UK, 2009.
O'Brien SJ, Larose TL, Adak GK, Evans MR, Tam CC; Foodborne Disease Attribution Study Group. O'Brien SJ, et al. BMJ Open. 2016 Sep 13;6(9):e011119. doi: 10.1136/bmjopen-2016-011119. BMJ Open. 2016. PMID: 27625054 Free PMC article. Review. - Towards quantitative uncertainty assessment for cancer risks: central estimates and probability distributions of risk in dose-response modeling.
Kopylev L, Chen C, White P. Kopylev L, et al. Regul Toxicol Pharmacol. 2007 Dec;49(3):203-7. doi: 10.1016/j.yrtph.2007.08.002. Epub 2007 Aug 24. Regul Toxicol Pharmacol. 2007. PMID: 17905499 Review.
Cited by
- Joining and splitting models with Markov melding.
Goudie RJB, Presanis AM, Lunn D, De Angelis D, Wernisch L. Goudie RJB, et al. Bayesian Anal. 2019 Jan;14(1):81-109. doi: 10.1214/18-BA1104. Bayesian Anal. 2019. PMID: 30631389 Free PMC article. - Measuring underreporting and under-ascertainment in infectious disease datasets: a comparison of methods.
Gibbons CL, Mangen MJ, Plass D, Havelaar AH, Brooke RJ, Kramarz P, Peterson KL, Stuurman AL, Cassini A, Fèvre EM, Kretzschmar ME; Burden of Communicable diseases in Europe (BCoDE) consortium. Gibbons CL, et al. BMC Public Health. 2014 Feb 11;14:147. doi: 10.1186/1471-2458-14-147. BMC Public Health. 2014. PMID: 24517715 Free PMC article. - The principles and methods behind EFSA's Guidance on Uncertainty Analysis in Scientific Assessment.
EFSA Scientific Committee; Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Schlatter JR, Silano V, Solecki R, Turck D, Younes M, Craig P, Hart A, Von Goetz N, Koutsoumanis K, Mortensen A, Ossendorp B, Germini A, Martino L, Merten C, Mosbach-Schulz O, Smith A, Hardy A. EFSA Scientific Committee, et al. EFSA J. 2018 Jan 24;16(1):e05122. doi: 10.2903/j.efsa.2018.5122. eCollection 2018 Jan. EFSA J. 2018. PMID: 32625670 Free PMC article. - A numerically stable algorithm for integrating Bayesian models using Markov melding.
Manderson AA, Goudie RJB. Manderson AA, et al. Stat Comput. 2022;32(2):24. doi: 10.1007/s11222-022-10086-2. Epub 2022 Feb 18. Stat Comput. 2022. PMID: 35310545 Free PMC article. - Evidence Synthesis for Stochastic Epidemic Models.
Birrell PJ, De Angelis D, Presanis AM. Birrell PJ, et al. Stat Sci. 2018;33(1):34-43. doi: 10.1214/17-STS631. Stat Sci. 2018. PMID: 31975746 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical