Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes - PubMed (original) (raw)
Review
. 2011 Apr;392(4):277-89.
doi: 10.1515/BC.2011.042. Epub 2011 Feb 7.
Affiliations
- PMID: 21294681
- DOI: 10.1515/BC.2011.042
Review
Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes
Sinan Al-Attar et al. Biol Chem. 2011 Apr.
Abstract
Many prokaryotes contain the recently discovered defense system against mobile genetic elements. This defense system contains a unique type of repetitive DNA stretches, termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs). CRISPRs consist of identical repeated DNA sequences (repeats), interspaced by highly variable sequences referred to as spacers. The spacers originate from either phages or plasmids and comprise the prokaryotes' 'immunological memory'. CRISPR-associated (cas) genes encode conserved proteins that together with CRISPRs make-up the CRISPR/Cas system, responsible for defending the prokaryotic cell against invaders. CRISPR-mediated resistance has been proposed to involve three stages: (i) CRISPR-Adaptation, the invader DNA is encountered by the CRISPR/Cas machinery and an invader-derived short DNA fragment is incorporated in the CRISPR array. (ii) CRISPR-Expression, the CRISPR array is transcribed and the transcript is processed by Cas proteins. (iii) CRISPR-Interference, the invaders' nucleic acid is recognized by complementarity to the crRNA and neutralized. An application of the CRISPR/Cas system is the immunization of industry-relevant prokaryotes (or eukaryotes) against mobile-genetic invasion. In addition, the high variability of the CRISPR spacer content can be exploited for phylogenetic and evolutionary studies. Despite impressive progress during the last couple of years, the elucidation of several fundamental details will be a major challenge in future research.
Similar articles
- CRISPR-based adaptive and heritable immunity in prokaryotes.
van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJ. van der Oost J, et al. Trends Biochem Sci. 2009 Aug;34(8):401-7. doi: 10.1016/j.tibs.2009.05.002. Epub 2009 Jul 29. Trends Biochem Sci. 2009. PMID: 19646880 Review. - CRISPR/Cas, the immune system of bacteria and archaea.
Horvath P, Barrangou R. Horvath P, et al. Science. 2010 Jan 8;327(5962):167-70. doi: 10.1126/science.1179555. Science. 2010. PMID: 20056882 Review. - CRISPR-Cas systems and RNA-guided interference.
Barrangou R. Barrangou R. Wiley Interdiscip Rev RNA. 2013 May-Jun;4(3):267-78. doi: 10.1002/wrna.1159. Epub 2013 Mar 20. Wiley Interdiscip Rev RNA. 2013. PMID: 23520078 Review. - CRISPR--a widespread system that provides acquired resistance against phages in bacteria and archaea.
Sorek R, Kunin V, Hugenholtz P. Sorek R, et al. Nat Rev Microbiol. 2008 Mar;6(3):181-6. doi: 10.1038/nrmicro1793. Nat Rev Microbiol. 2008. PMID: 18157154 Review. - [Comparative analysis of clustered regularly interspaced short palindromic repeats (CRISPRs) loci in the genomes of halophilic archaea].
Zhang F, Zhang B, Xiang H, Hu S. Zhang F, et al. Wei Sheng Wu Xue Bao. 2009 Nov;49(11):1445-53. Wei Sheng Wu Xue Bao. 2009. PMID: 20112671 Chinese.
Cited by
- Genome editing in Sub-Saharan Africa: a game-changing strategy for climate change mitigation and sustainable agriculture.
Amoah P, Oumarou Mahamane AR, Byiringiro MH, Mahula NJ, Manneh N, Oluwasegun YR, Assfaw AT, Mukiti HM, Garba AD, Chiemeke FK, Bernard Ojuederie O, Olasanmi B. Amoah P, et al. GM Crops Food. 2024 Dec 31;15(1):279-302. doi: 10.1080/21645698.2024.2411767. Epub 2024 Oct 31. GM Crops Food. 2024. PMID: 39481911 Free PMC article. Review. - Recognition of cyanobacteria promoters via Siamese network-based contrastive learning under novel non-promoter generation.
Yang G, Li J, Hu J, Shi JY. Yang G, et al. Brief Bioinform. 2024 Mar 27;25(3):bbae193. doi: 10.1093/bib/bbae193. Brief Bioinform. 2024. PMID: 38701419 Free PMC article. - Designing hybrid CRISPR-Cas12 and LAMP detection systems for treatment-resistant Plasmodium falciparum with in silico method.
Parikesit AA, Hermantara R, Gregorius K, Siddharta E. Parikesit AA, et al. Narra J. 2023 Dec;3(3):e301. doi: 10.52225/narra.v3i3.301. Epub 2023 Dec 25. Narra J. 2023. PMID: 38455618 Free PMC article. - Genomic basis of environmental adaptation in the widespread poly-extremophilic Exiguobacterium group.
Shen L, Liu Y, Chen L, Lei T, Ren P, Ji M, Song W, Lin H, Su W, Wang S, Rooman M, Pucci F. Shen L, et al. ISME J. 2024 Jan 8;18(1):wrad020. doi: 10.1093/ismejo/wrad020. ISME J. 2024. PMID: 38365240 Free PMC article. - Distribution characteristics of the Legionella CRISPR-Cas system and its regulatory mechanism underpinning phenotypic function.
Xu P-X, Ren H-Y, Zhao N, Jin X-J, Wen B-H, Qin T. Xu P-X, et al. Infect Immun. 2024 Jan 16;92(1):e0022923. doi: 10.1128/iai.00229-23. Epub 2023 Dec 15. Infect Immun. 2024. PMID: 38099659 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources