Quantitative metagenomic analyses based on average genome size normalization - PubMed (original) (raw)
Quantitative metagenomic analyses based on average genome size normalization
Jeremy A Frank et al. Appl Environ Microbiol. 2011 Apr.
Abstract
Over the past quarter-century, microbiologists have used DNA sequence information to aid in the characterization of microbial communities. During the last decade, this has expanded from single genes to microbial community genomics, or metagenomics, in which the gene content of an environment can provide not just a census of the community members but direct information on metabolic capabilities and potential interactions among community members. Here we introduce a method for the quantitative characterization and comparison of microbial communities based on the normalization of metagenomic data by estimating average genome sizes. This normalization can relieve comparative biases introduced by differences in community structure, number of sequencing reads, and sequencing read lengths between different metagenomes. We demonstrate the utility of this approach by comparing metagenomes from two different marine sources using both conventional small-subunit (SSU) rRNA gene analyses and our quantitative method to calculate the proportion of genomes in each sample that are capable of a particular metabolic trait. With both environments, to determine what proportion of each community they make up and how differences in environment affect their abundances, we characterize three different types of autotrophic organisms: aerobic, photosynthetic carbon fixers (the Cyanobacteria); anaerobic, photosynthetic carbon fixers (the Chlorobi); and anaerobic, nonphotosynthetic carbon fixers (the Desulfobacteraceae). These analyses demonstrate how genome proportionality compares to SSU rRNA gene relative abundance and how factors such as average genome size and SSU rRNA gene copy number affect sampling probability and therefore both types of community analysis.
Figures
FIG. 1.
Characterization of the physical, chemical, and biological characteristics of the Ace Lake samples according to depth. (A) The oxygen concentrations, salinity, and temperature for each depth. (B) A comparison of the relative abundances of relevant organism types, in terms of both the proportion of SSU rRNA gene fragments and genomes that they make up at each depth. For the genome calculations, the organisms falling into the “other _Deltaproteobacteria_” group are placed into the “Other” group. Data displayed in panel B for proportion of genomes are taken from Tables S3 and S6 in the supplemental material.
Similar articles
- MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach.
Brown BL, Watson M, Minot SS, Rivera MC, Franklin RB. Brown BL, et al. Gigascience. 2017 Mar 1;6(3):1-10. doi: 10.1093/gigascience/gix007. Gigascience. 2017. PMID: 28327976 Free PMC article. - Phylogenomics of an uncultivated, aerobic and thermophilic, photoheterotrophic member of Chlorobia sheds light into the evolution of the phylum Chlorobi.
Roy C, Bakshi U, Rameez MJ, Mandal S, Haldar PK, Pyne P, Ghosh W. Roy C, et al. Comput Biol Chem. 2019 Jun;80:206-216. doi: 10.1016/j.compbiolchem.2019.04.001. Epub 2019 Apr 3. Comput Biol Chem. 2019. PMID: 30981103 - Metagenomic signatures of 86 microbial and viral metagenomes.
Willner D, Thurber RV, Rohwer F. Willner D, et al. Environ Microbiol. 2009 Jul;11(7):1752-66. doi: 10.1111/j.1462-2920.2009.01901.x. Epub 2009 Mar 18. Environ Microbiol. 2009. PMID: 19302541 - Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities.
Suenaga H. Suenaga H. Environ Microbiol. 2012 Jan;14(1):13-22. doi: 10.1111/j.1462-2920.2011.02438.x. Epub 2011 Mar 1. Environ Microbiol. 2012. PMID: 21366818 Review. - Practical considerations for sampling and data analysis in contemporary metagenomics-based environmental studies.
Staley C, Sadowsky MJ. Staley C, et al. J Microbiol Methods. 2018 Nov;154:14-18. doi: 10.1016/j.mimet.2018.09.020. Epub 2018 Oct 1. J Microbiol Methods. 2018. PMID: 30287354 Review.
Cited by
- Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system.
Gomez-Alvarez V, Revetta RP, Santo Domingo JW. Gomez-Alvarez V, et al. BMC Microbiol. 2012 Jun 22;12:122. doi: 10.1186/1471-2180-12-122. BMC Microbiol. 2012. PMID: 22727216 Free PMC article. - Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome.
Nayfach S, Pollard KS. Nayfach S, et al. Genome Biol. 2015 Mar 25;16(1):51. doi: 10.1186/s13059-015-0611-7. Genome Biol. 2015. PMID: 25853934 Free PMC article. - Exploring the Interspecific Interactions and the Metabolome of the Soil Isolate Hylemonella gracilis.
Tyc O, Kulkarni P, Ossowicki A, Tracanna V, Medema MH, van Baarlen P, van IJcken WFJ, Verhoeven KJF, Garbeva P. Tyc O, et al. mSystems. 2023 Feb 23;8(1):e0057422. doi: 10.1128/msystems.00574-22. Epub 2022 Dec 20. mSystems. 2023. PMID: 36537799 Free PMC article. - Microbial rhodopsins on leaf surfaces of terrestrial plants.
Atamna-Ismaeel N, Finkel OM, Glaser F, Sharon I, Schneider R, Post AF, Spudich JL, von Mering C, Vorholt JA, Iluz D, Béjà O, Belkin S. Atamna-Ismaeel N, et al. Environ Microbiol. 2012 Jan;14(1):140-6. doi: 10.1111/j.1462-2920.2011.02554.x. Epub 2011 Sep 1. Environ Microbiol. 2012. PMID: 21883799 Free PMC article. - Sources of airborne microorganisms in the built environment.
Prussin AJ 2nd, Marr LC. Prussin AJ 2nd, et al. Microbiome. 2015 Dec 22;3:78. doi: 10.1186/s40168-015-0144-z. Microbiome. 2015. PMID: 26694197 Free PMC article.
References
- Altschul, S. F., W. Gish. W. Miller. E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. - PubMed
- Beh, M., G. Strauss, R. Huber, K. O. Stetter, and G. Fuchs. 1993. Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and the archaebacterium Thermoproteus neutrophilus. Arch. Microbiol. 160:306-311.
- Béjà, O., E. N. Spudich, J. L. Spudich, M. Leclerc, and E. F. DeLong. 2001. Proteorhodopsin phototrophy in the ocean. Nature 411:786-789. - PubMed
- Beszteri, B., B. Temperton, S. Frickenhaus, and S. J. Giovannoni. 2010. Average genome size: a potential source of bias in comparative metagenomics. ISME J. 4:1075-1077. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous