Different status of the gene for ribosomal protein S16 in the chloroplast genome during evolution of the genus Arabidopsis and closely related species - PubMed (original) (raw)
Different status of the gene for ribosomal protein S16 in the chloroplast genome during evolution of the genus Arabidopsis and closely related species
Shradha Roy et al. Genes Genet Syst. 2010.
Free article
Abstract
The ribosomal protein S16 (RPS16), the product of the rps16, is generally encoded in the chloroplast genomes of flowering plants. However, it has been reported that chloroplast-encoded RPS16 in mono- and dicotyledonous plants has been substituted by the product of nuclear-encoded rps16, which was transferred from the mitochondria to the nucleus before the early divergence of angiosperms. Current databases show that the chloroplast-encoded rps16 has become a pseudogene in four species of the Brassicaceae (Aethionema grandiflorum, Arabis hirsuta, Draba nemorosa, and Lobularia maritima). Further analysis of Arabidopsis thaliana and its close relatives has shown that pseudogenization has also occurred via the loss of its splicing capacity (Arabidopsis thaliana and Olimarabidopsis pumila). In contrast, the spliced product of chloroplast-encoded rps16 is observed in close relatives of Arabidopsis thaliana (Arabidopsis arenosa, Arabidopsis lyrata, and Crucihimalaya lasiocarpa). In this study, we identified the different functional status of rps16 in several chloroplast genomes in the genus Arabidopsis and its close relatives. Our results strongly suggest that nuclear- and chloroplast-encoded rps16 genes coexisted for at least 126 million years. We raise the possibility of the widespread pseudogenization of rps16 in the angiosperm chloroplast genomes via the loss of its splicing capacity, even when the rps16 encoded in the chloroplast genome is transcriptionally active.
Similar articles
- Substitution of the gene for chloroplast RPS16 was assisted by generation of a dual targeting signal.
Ueda M, Nishikawa T, Fujimoto M, Takanashi H, Arimura S, Tsutsumi N, Kadowaki K. Ueda M, et al. Mol Biol Evol. 2008 Aug;25(8):1566-75. doi: 10.1093/molbev/msn102. Epub 2008 May 2. Mol Biol Evol. 2008. PMID: 18453549 - The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus.
Keller J, Rousseau-Gueutin M, Martin GE, Morice J, Boutte J, Coissac E, Ourari M, Aïnouche M, Salmon A, Cabello-Hurtado F, Aïnouche A. Keller J, et al. DNA Res. 2017 Aug 1;24(4):343-358. doi: 10.1093/dnares/dsx006. DNA Res. 2017. PMID: 28338826 Free PMC article. - The evolutionary fate of rpl32 and rps16 losses in the Euphorbia schimperi (Euphorbiaceae) plastome.
Alqahtani AA, Jansen RK. Alqahtani AA, et al. Sci Rep. 2021 Apr 2;11(1):7466. doi: 10.1038/s41598-021-86820-z. Sci Rep. 2021. PMID: 33811236 Free PMC article. - Characterization of the complete chloroplast genome of Arabis stellari and comparisons with related species.
Raman G, Park V, Kwak M, Lee B, Park S. Raman G, et al. PLoS One. 2017 Aug 15;12(8):e0183197. doi: 10.1371/journal.pone.0183197. eCollection 2017. PLoS One. 2017. PMID: 28809950 Free PMC article. - The Arabidopsis chloroplast ribosomal protein L21 is encoded by a nuclear gene of mitochondrial origin.
Gallois JL, Achard P, Green G, Mache R. Gallois JL, et al. Gene. 2001 Aug 22;274(1-2):179-85. doi: 10.1016/s0378-1119(01)00613-8. Gene. 2001. PMID: 11675010
Cited by
- Light-Dependent Translation Change of Arabidopsis psbA Correlates with RNA Structure Alterations at the Translation Initiation Region.
Gawroński P, Enroth C, Kindgren P, Marquardt S, Karpiński S, Leister D, Jensen PE, Vinther J, Scharff LB. Gawroński P, et al. Cells. 2021 Feb 4;10(2):322. doi: 10.3390/cells10020322. Cells. 2021. PMID: 33557293 Free PMC article. - Complete Chloroplast Genome of Cercis chuniana (Fabaceae) with Structural and Genetic Comparison to Six Species in Caesalpinioideae.
Liu W, Kong H, Zhou J, Fritsch PW, Hao G, Gong W. Liu W, et al. Int J Mol Sci. 2018 Apr 25;19(5):1286. doi: 10.3390/ijms19051286. Int J Mol Sci. 2018. PMID: 29693617 Free PMC article. - Plastome phylogeny and early diversification of Brassicaceae.
Guo X, Liu J, Hao G, Zhang L, Mao K, Wang X, Zhang D, Ma T, Hu Q, Al-Shehbaz IA, Koch MA. Guo X, et al. BMC Genomics. 2017 Feb 16;18(1):176. doi: 10.1186/s12864-017-3555-3. BMC Genomics. 2017. PMID: 28209119 Free PMC article. - Comparative Plastome Analysis of Root- and Stem-Feeding Parasites of Santalales Untangle the Footprints of Feeding Mode and Lifestyle Transitions.
Chen X, Fang D, Wu C, Liu B, Liu Y, Sahu SK, Song B, Yang S, Yang T, Wei J, Wang X, Zhang W, Xu Q, Wang H, Yuan L, Liao X, Chen L, Chen Z, Yuan F, Chang Y, Lu L, Yang H, Wang J, Xu X, Liu X, Wicke S, Liu H. Chen X, et al. Genome Biol Evol. 2020 Jan 1;12(1):3663-3676. doi: 10.1093/gbe/evz271. Genome Biol Evol. 2020. PMID: 31845987 Free PMC article. - A comparison of chloroplast genome sequences in Aconitum (Ranunculaceae): a traditional herbal medicinal genus.
Kong H, Liu W, Yao G, Gong W. Kong H, et al. PeerJ. 2017 Nov 7;5:e4018. doi: 10.7717/peerj.4018. eCollection 2017. PeerJ. 2017. PMID: 29134154 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases