A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia) - PubMed (original) (raw)
A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia)
Ingi Agnarsson et al. PLoS Curr. 2011.
Abstract
Despite their obvious utility, detailed species-level phylogenies are lacking for many groups, including several major mammalian lineages such as bats. Here we provide a cytochrome b genealogy of over 50% of bat species (648 terminal taxa). Based on prior analyzes of related mammal groups, cytb emerges as a particularly reliable phylogenetic marker, and given that our results are broadly congruent with prior knowledge, the phylogeny should be a useful tool for comparative analyzes. Nevertheless, we stress that a single-gene analysis of such a large and old group cannot be interpreted as more than a crude estimate of the bat species tree. Analysis of the full dataset supports the traditional division of bats into macro- and microchiroptera, but not the recently proposed division into Yinpterochiroptera and Yangochiroptera. However, our results only weakly reject the former and strongly support the latter group, and furthermore, a time calibrated analysis of a pruned dataset where most included taxa have the entire 1140bp cytb sequence finds monophyletic Yinpterochiroptera. Most bat families and many higher level groups are supported, however, relationships among families are in general weakly supported, as are many of the deeper nodes of the tree. The exceptions are in most cases apparently due to the misplacement of species with little available data, while in a few cases the results suggest putative problems with current classification, such as the non-monophyly of Mormoopidae. We provide this phylogenetic hypothesis, and an analysis of divergence times, as tools for evolutionary and ecological studies that will be useful until more inclusive studies using multiple loci become available.
Figures
Similar articles
- A molecular phylogeny for all 21 families within Chiroptera (bats).
Hao X, Lu Q, Zhao H. Hao X, et al. Integr Zool. 2024 Sep;19(5):989-998. doi: 10.1111/1749-4877.12772. Epub 2023 Oct 18. Integr Zool. 2024. PMID: 37853557 - Phylogenomic analyses of bat subordinal relationships based on transcriptome data.
Lei M, Dong D. Lei M, et al. Sci Rep. 2016 Jun 13;6:27726. doi: 10.1038/srep27726. Sci Rep. 2016. PMID: 27291671 Free PMC article. - A phylogenetic supertree of the bats (Mammalia: Chiroptera).
Jones KE, Purvis A, MacLarnon A, Bininda-Emonds OR, Simmons NB. Jones KE, et al. Biol Rev Camb Philos Soc. 2002 May;77(2):223-59. doi: 10.1017/s1464793101005899. Biol Rev Camb Philos Soc. 2002. PMID: 12056748 Review. - Characterization and phylogenetic utility of the mammalian protamine p1 gene.
Van Den Bussche RA, Hoofer SR, Hansen EW. Van Den Bussche RA, et al. Mol Phylogenet Evol. 2002 Mar;22(3):333-41. doi: 10.1006/mpev.2001.1051. Mol Phylogenet Evol. 2002. PMID: 11884158 - The evolution of bat pollination: a phylogenetic perspective.
Fleming TH, Geiselman C, Kress WJ. Fleming TH, et al. Ann Bot. 2009 Nov;104(6):1017-43. doi: 10.1093/aob/mcp197. Epub 2009 Sep 29. Ann Bot. 2009. PMID: 19789175 Free PMC article. Review.
Cited by
- Distinct Genes with Similar Functions Underlie Convergent Evolution in Myotis Bat Ecomorphs.
Morales AE, Burbrink FT, Segall M, Meza M, Munegowda C, Webala PW, Patterson BD, Thong VD, Ruedi M, Hiller M, Simmons NB. Morales AE, et al. Mol Biol Evol. 2024 Sep 4;41(9):msae165. doi: 10.1093/molbev/msae165. Mol Biol Evol. 2024. PMID: 39116340 Free PMC article. - Evolution of Hepatitis B Virus Receptor NTCP Reveals Differential Pathogenicities and Species Specificities of Hepadnaviruses in Primates, Rodents, and Bats.
Jacquet S, Pons JB, De Bernardo A, Ngoubangoye B, Cosset FL, Régis C, Etienne L, Pontier D. Jacquet S, et al. J Virol. 2019 Feb 19;93(5):e01738-18. doi: 10.1128/JVI.01738-18. Print 2019 Mar 1. J Virol. 2019. PMID: 30541833 Free PMC article. - Genetic characterization of a novel picornavirus in Algerian bats: co-evolution analysis of bat-related picornaviruses.
Zeghbib S, Herczeg R, Kemenesi G, Zana B, Kurucz K, Urbán P, Madai M, Földes F, Papp H, Somogyi B, Jakab F. Zeghbib S, et al. Sci Rep. 2019 Oct 31;9(1):15706. doi: 10.1038/s41598-019-52209-2. Sci Rep. 2019. PMID: 31673141 Free PMC article. - Ancient convergent losses of Paraoxonase 1 yield potential risks for modern marine mammals.
Meyer WK, Jamison J, Richter R, Woods SE, Partha R, Kowalczyk A, Kronk C, Chikina M, Bonde RK, Crocker DE, Gaspard J, Lanyon JM, Marsillach J, Furlong CE, Clark NL. Meyer WK, et al. Science. 2018 Aug 10;361(6402):591-594. doi: 10.1126/science.aap7714. Science. 2018. PMID: 30093596 Free PMC article. - New Myzopodidae (Chiroptera) from the late Paleogene of Egypt: emended family diagnosis and biogeographic origins of Noctilionoidea.
Gunnell GF, Simmons NB, Seiffert ER. Gunnell GF, et al. PLoS One. 2014 Feb 4;9(2):e86712. doi: 10.1371/journal.pone.0086712. eCollection 2014. PLoS One. 2014. PMID: 24504061 Free PMC article.
References
- Felsenstein J. 1985. Phylogneies and the comparative method. American Naturalist 125: 1-15.
- Harvey PH, Pagel MD. 1991. The comparative method in evolutionary biology. New York: Oxford University Press.
- May-Collado L, Agnarsson I. 2006. Cytochrome b and bayesian inference of whale phylogeny. Molecular Phylogenetics and Evolution 38: 344-354. - PubMed
- Agnarsson I, May-Collado LJ. 2008. The phylogeny of Cetartiodactyla: The importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies. Molecular Phylogenetics and Evolution 48: 964-985. - PubMed
- Agnarsson I, Kuntner M, May-Collado LJ. 2010. Dogs, cats, and kin: A molecular species-level phylogeny of Carnivora. Molecular Phylogenetics and Evolution 54: 726-745. - PubMed
LinkOut - more resources
Full Text Sources