Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline - PubMed (original) (raw)
. 2011 May 15;20(10):1916-24.
doi: 10.1093/hmg/ddr073. Epub 2011 Feb 24.
Affiliations
- PMID: 21349919
- DOI: 10.1093/hmg/ddr073
Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline
Wigard P Kloosterman et al. Hum Mol Genet. 2011.
Abstract
A variety of mutational mechanisms shape the dynamic architecture of human genomes and occasionally result in congenital defects and disease. Here, we used genome-wide long mate-pair sequencing to systematically screen for inherited and de novo structural variation in a trio including a child with severe congenital abnormalities. We identified 4321 inherited structural variants and 17 de novo rearrangements. We characterized the de novo structural changes to the base-pair level revealing a complex series of balanced inter- and intra-chromosomal rearrangements consisting of 12 breakpoints involving chromosomes 1, 4 and 10. Detailed inspection of breakpoint regions indicated that a series of simultaneous double-stranded DNA breaks caused local shattering of chromosomes. Fusion of the resulting chromosomal fragments involved non-homologous end joining, since junction points displayed limited or no homology and small insertions and deletions. The pattern of random joining of chromosomal fragments that we observe here strongly resembles the somatic rearrangement patterns--termed chromothripsis--that have recently been described in deranged cancer cells. We conclude that a similar mechanism may also drive the formation of de novo structural variation in the germline.
Similar articles
- Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms.
Kloosterman WP, Tavakoli-Yaraki M, van Roosmalen MJ, van Binsbergen E, Renkens I, Duran K, Ballarati L, Vergult S, Giardino D, Hansson K, Ruivenkamp CA, Jager M, van Haeringen A, Ippel EF, Haaf T, Passarge E, Hochstenbach R, Menten B, Larizza L, Guryev V, Poot M, Cuppen E. Kloosterman WP, et al. Cell Rep. 2012 Jun 28;1(6):648-55. doi: 10.1016/j.celrep.2012.05.009. Epub 2012 Jun 15. Cell Rep. 2012. PMID: 22813740 - De novo complex chromosome rearrangement: a study of two patients.
Melo DG, Huber J, Giuliani LR, Mazzucatto LF, Riegel M, Pina-Neto JM. Melo DG, et al. Genet Couns. 2004;15(3):303-10. Genet Couns. 2004. PMID: 15517822 - Spectral karyotyping identifies recurrent complex rearrangements of chromosomes 8, 17, and 20 in osteosarcomas.
Bayani J, Zielenska M, Pandita A, Al-Romaih K, Karaskova J, Harrison K, Bridge JA, Sorensen P, Thorner P, Squire JA. Bayani J, et al. Genes Chromosomes Cancer. 2003 Jan;36(1):7-16. doi: 10.1002/gcc.10132. Genes Chromosomes Cancer. 2003. PMID: 12461745 - Chromatin structural elements and chromosomal translocations in leukemia.
Zhang Y, Rowley JD. Zhang Y, et al. DNA Repair (Amst). 2006 Sep 8;5(9-10):1282-97. doi: 10.1016/j.dnarep.2006.05.020. Epub 2006 Aug 7. DNA Repair (Amst). 2006. PMID: 16893685 Review.
Cited by
- Multiple Chromoanasynthesis in a Rare Case of Sporadic Renal Leiomyosarcoma: A Case Report.
Anoshkin KI, Karandasheva KO, Goryacheva KM, Pyankov DV, Koshkin PA, Pavlova TV, Bobin AN, Shpot EV, Chernov YN, Vinarov AZ, Zaletaev DV, Kutsev SI, Strelnikov VV. Anoshkin KI, et al. Front Oncol. 2020 Aug 19;10:1653. doi: 10.3389/fonc.2020.01653. eCollection 2020. Front Oncol. 2020. PMID: 32974204 Free PMC article. - Mechanisms for Structural Variation in the Human Genome.
Currall BB, Chiang C, Talkowski ME, Morton CC. Currall BB, et al. Curr Genet Med Rep. 2013 Jun 1;1(2):81-90. doi: 10.1007/s40142-013-0012-8. Curr Genet Med Rep. 2013. PMID: 23730541 Free PMC article. - Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations.
Rausch T, Jones DT, Zapatka M, Stütz AM, Zichner T, Weischenfeldt J, Jäger N, Remke M, Shih D, Northcott PA, Pfaff E, Tica J, Wang Q, Massimi L, Witt H, Bender S, Pleier S, Cin H, Hawkins C, Beck C, von Deimling A, Hans V, Brors B, Eils R, Scheurlen W, Blake J, Benes V, Kulozik AE, Witt O, Martin D, Zhang C, Porat R, Merino DM, Wasserman J, Jabado N, Fontebasso A, Bullinger L, Rücker FG, Döhner K, Döhner H, Koster J, Molenaar JJ, Versteeg R, Kool M, Tabori U, Malkin D, Korshunov A, Taylor MD, Lichter P, Pfister SM, Korbel JO. Rausch T, et al. Cell. 2012 Jan 20;148(1-2):59-71. doi: 10.1016/j.cell.2011.12.013. Cell. 2012. PMID: 22265402 Free PMC article. - The landscape of extrachromosomal circular DNA (eccDNA) in the normal hematopoiesis and leukemia evolution.
Zeng T, Huang W, Cui L, Zhu P, Lin Q, Zhang W, Li J, Deng C, Wu Z, Huang Z, Zhang Z, Qian T, Xie W, Xiao M, Chen Y, Fu L. Zeng T, et al. Cell Death Discov. 2022 Sep 28;8(1):400. doi: 10.1038/s41420-022-01189-w. Cell Death Discov. 2022. PMID: 36171187 Free PMC article. - Characteristics of de novo structural changes in the human genome.
Kloosterman WP, Francioli LC, Hormozdiari F, Marschall T, Hehir-Kwa JY, Abdellaoui A, Lameijer EW, Moed MH, Koval V, Renkens I, van Roosmalen MJ, Arp P, Karssen LC, Coe BP, Handsaker RE, Suchiman ED, Cuppen E, Thung DT, McVey M, Wendl MC; Genome of Netherlands Consortium; Uitterlinden A, van Duijn CM, Swertz MA, Wijmenga C, van Ommen GB, Slagboom PE, Boomsma DI, Schönhuth A, Eichler EE, de Bakker PI, Ye K, Guryev V. Kloosterman WP, et al. Genome Res. 2015 Jun;25(6):792-801. doi: 10.1101/gr.185041.114. Epub 2015 Apr 16. Genome Res. 2015. PMID: 25883321 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources