Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline - PubMed (original) (raw)
. 2011 May 15;20(10):1916-24.
doi: 10.1093/hmg/ddr073. Epub 2011 Feb 24.
Affiliations
- PMID: 21349919
- DOI: 10.1093/hmg/ddr073
Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline
Wigard P Kloosterman et al. Hum Mol Genet. 2011.
Abstract
A variety of mutational mechanisms shape the dynamic architecture of human genomes and occasionally result in congenital defects and disease. Here, we used genome-wide long mate-pair sequencing to systematically screen for inherited and de novo structural variation in a trio including a child with severe congenital abnormalities. We identified 4321 inherited structural variants and 17 de novo rearrangements. We characterized the de novo structural changes to the base-pair level revealing a complex series of balanced inter- and intra-chromosomal rearrangements consisting of 12 breakpoints involving chromosomes 1, 4 and 10. Detailed inspection of breakpoint regions indicated that a series of simultaneous double-stranded DNA breaks caused local shattering of chromosomes. Fusion of the resulting chromosomal fragments involved non-homologous end joining, since junction points displayed limited or no homology and small insertions and deletions. The pattern of random joining of chromosomal fragments that we observe here strongly resembles the somatic rearrangement patterns--termed chromothripsis--that have recently been described in deranged cancer cells. We conclude that a similar mechanism may also drive the formation of de novo structural variation in the germline.
Similar articles
- Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms.
Kloosterman WP, Tavakoli-Yaraki M, van Roosmalen MJ, van Binsbergen E, Renkens I, Duran K, Ballarati L, Vergult S, Giardino D, Hansson K, Ruivenkamp CA, Jager M, van Haeringen A, Ippel EF, Haaf T, Passarge E, Hochstenbach R, Menten B, Larizza L, Guryev V, Poot M, Cuppen E. Kloosterman WP, et al. Cell Rep. 2012 Jun 28;1(6):648-55. doi: 10.1016/j.celrep.2012.05.009. Epub 2012 Jun 15. Cell Rep. 2012. PMID: 22813740 - De novo complex chromosome rearrangement: a study of two patients.
Melo DG, Huber J, Giuliani LR, Mazzucatto LF, Riegel M, Pina-Neto JM. Melo DG, et al. Genet Couns. 2004;15(3):303-10. Genet Couns. 2004. PMID: 15517822 - Spectral karyotyping identifies recurrent complex rearrangements of chromosomes 8, 17, and 20 in osteosarcomas.
Bayani J, Zielenska M, Pandita A, Al-Romaih K, Karaskova J, Harrison K, Bridge JA, Sorensen P, Thorner P, Squire JA. Bayani J, et al. Genes Chromosomes Cancer. 2003 Jan;36(1):7-16. doi: 10.1002/gcc.10132. Genes Chromosomes Cancer. 2003. PMID: 12461745 - Chromatin structural elements and chromosomal translocations in leukemia.
Zhang Y, Rowley JD. Zhang Y, et al. DNA Repair (Amst). 2006 Sep 8;5(9-10):1282-97. doi: 10.1016/j.dnarep.2006.05.020. Epub 2006 Aug 7. DNA Repair (Amst). 2006. PMID: 16893685 Review.
Cited by
- Chromothripsis: breakage-fusion-bridge over and over again.
Sorzano CO, Pascual-Montano A, Sánchez de Diego A, Martínez-A C, van Wely KH. Sorzano CO, et al. Cell Cycle. 2013 Jul 1;12(13):2016-23. doi: 10.4161/cc.25266. Epub 2013 Jun 11. Cell Cycle. 2013. PMID: 23759584 Free PMC article. - Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements.
Holland AJ, Cleveland DW. Holland AJ, et al. Nat Med. 2012 Nov;18(11):1630-8. doi: 10.1038/nm.2988. Epub 2012 Nov 7. Nat Med. 2012. PMID: 23135524 Free PMC article. - Extrachromosomal Circular DNA: Current Knowledge and Implications for CNS Aging and Neurodegeneration.
Ain Q, Schmeer C, Wengerodt D, Witte OW, Kretz A. Ain Q, et al. Int J Mol Sci. 2020 Apr 2;21(7):2477. doi: 10.3390/ijms21072477. Int J Mol Sci. 2020. PMID: 32252492 Free PMC article. Review. - Distinct subtypes of genomic PTEN deletion size influence the landscape of aneuploidy and outcome in prostate cancer.
Vidotto T, Tiezzi DG, Squire JA. Vidotto T, et al. Mol Cytogenet. 2018 Jan 3;11:1. doi: 10.1186/s13039-017-0348-y. eCollection 2018. Mol Cytogenet. 2018. PMID: 29308088 Free PMC article. - Megabase Length Hypermutation Accompanies Human Structural Variation at 17p11.2.
Beck CR, Carvalho CMB, Akdemir ZC, Sedlazeck FJ, Song X, Meng Q, Hu J, Doddapaneni H, Chong Z, Chen ES, Thornton PC, Liu P, Yuan B, Withers M, Jhangiani SN, Kalra D, Walker K, English AC, Han Y, Chen K, Muzny DM, Ira G, Shaw CA, Gibbs RA, Hastings PJ, Lupski JR. Beck CR, et al. Cell. 2019 Mar 7;176(6):1310-1324.e10. doi: 10.1016/j.cell.2019.01.045. Epub 2019 Feb 28. Cell. 2019. PMID: 30827684 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources