ATP-dependent chromatin remodeling: genetics, genomics and mechanisms - PubMed (original) (raw)
Review
. 2011 Mar;21(3):396-420.
doi: 10.1038/cr.2011.32. Epub 2011 Mar 1.
Affiliations
- PMID: 21358755
- PMCID: PMC3110148
- DOI: 10.1038/cr.2011.32
Review
ATP-dependent chromatin remodeling: genetics, genomics and mechanisms
Diana C Hargreaves et al. Cell Res. 2011 Mar.
Abstract
Macromolecular assemblies that regulate chromatin structure using the energy of ATP hydrolysis have critical roles in development, cancer, and stem cell biology. The ATPases of this family are encoded by 27 human genes and are usually associated with several other proteins that are stable, non-exchangeable subunits. One fundamental mechanism used by these complexes is thought to be the movement or exchange of nucleosomes to regulate transcription. However, recent genetic studies indicate that chromatin remodelers may also be involved in regulating other aspects of chromatin structure during many cellular processes. The SWI/SNF family in particular appears to have undergone a substantial change in subunit composition and mechanism coincident with the evolutionary advent of multicellularity and the appearance of linking histones. The differential usage of this greater diversity of mammalian BAF subunits is essential for the development of specific cell fates, including the progression from pluripotency to multipotency to committed neurons. Recent human genetic screens have revealed that BRG1, ARID1A, BAF155, and hSNF5 are frequently mutated in tumors, indicating that BAF complexes also play a critical role in the initiation or progression of cancer. The mechanistic bases underlying the genetic requirements for BAF and other chromatin remodelers in development and cancer are relatively unexplored and will be a focus of this review.
Comment in
- Remodeling the susceptibility to stress-induced depression.
Sananbenesi F, Fischer A. Sananbenesi F, et al. Nat Med. 2015 Oct;21(10):1125-6. doi: 10.1038/nm.3970. Nat Med. 2015. PMID: 26444635 No abstract available.
Similar articles
- Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer.
Wu JI. Wu JI. Acta Biochim Biophys Sin (Shanghai). 2012 Jan;44(1):54-69. doi: 10.1093/abbs/gmr099. Acta Biochim Biophys Sin (Shanghai). 2012. PMID: 22194014 Review. - The SnAC domain of SWI/SNF is a histone anchor required for remodeling.
Sen P, Vivas P, Dechassa ML, Mooney AM, Poirier MG, Bartholomew B. Sen P, et al. Mol Cell Biol. 2013 Jan;33(2):360-70. doi: 10.1128/MCB.00922-12. Epub 2012 Nov 12. Mol Cell Biol. 2013. PMID: 23149935 Free PMC article. - A novel mechanism of antagonism between ATP-dependent chromatin remodeling complexes regulates RNR3 expression.
Tomar RS, Psathas JN, Zhang H, Zhang Z, Reese JC. Tomar RS, et al. Mol Cell Biol. 2009 Jun;29(12):3255-65. doi: 10.1128/MCB.01741-08. Epub 2009 Apr 6. Mol Cell Biol. 2009. PMID: 19349301 Free PMC article. - Mapping protein-DNA and protein-protein interactions of ATP-dependent chromatin remodelers.
Hota SK, Dechassa ML, Prasad P, Bartholomew B. Hota SK, et al. Methods Mol Biol. 2012;809:381-409. doi: 10.1007/978-1-61779-376-9_26. Methods Mol Biol. 2012. PMID: 22113290 - BAFfling pathologies: Alterations of BAF complexes in cancer.
Arnaud O, Le Loarer F, Tirode F. Arnaud O, et al. Cancer Lett. 2018 Apr 10;419:266-279. doi: 10.1016/j.canlet.2018.01.046. Epub 2018 Jan 31. Cancer Lett. 2018. PMID: 29374542 Review.
Cited by
- Epigenetics in NG2 glia cells.
Moyon S, Liang J, Casaccia P. Moyon S, et al. Brain Res. 2016 May 1;1638(Pt B):183-198. doi: 10.1016/j.brainres.2015.06.009. Epub 2015 Jun 17. Brain Res. 2016. PMID: 26092401 Free PMC article. Review. - Polyamine-based small molecule epigenetic modulators.
Sharma SK, Hazeldine S, Crowley ML, Hanson A, Beattie R, Varghese S, Senanayake TM, Hirata A, Hirata F, Huang Y, Wu Y, Steinbergs N, Murray-Stewart T, Bytheway I, Casero RA Jr, Woster PM. Sharma SK, et al. Medchemcomm. 2012;3(1):14-21. doi: 10.1039/C1MD00220A. Epub 2011 Nov 26. Medchemcomm. 2012. PMID: 23293738 Free PMC article. - The SWI/SNF PBAF complex facilitates REST occupancy at repressive chromatin.
Grossi E, Nguyen CB, Carcamo S, Moran S, Callaú VK, Filipescu D, Hasson D, Bernstein E. Grossi E, et al. bioRxiv [Preprint]. 2024 Aug 23:2024.08.23.609212. doi: 10.1101/2024.08.23.609212. bioRxiv. 2024. PMID: 39229151 Free PMC article. Preprint. - SNF5 is an essential executor of epigenetic regulation during differentiation.
You JS, De Carvalho DD, Dai C, Liu M, Pandiyan K, Zhou XJ, Liang G, Jones PA. You JS, et al. PLoS Genet. 2013 Apr;9(4):e1003459. doi: 10.1371/journal.pgen.1003459. Epub 2013 Apr 25. PLoS Genet. 2013. PMID: 23637628 Free PMC article. - Establishing pluripotency in early development.
Paranjpe SS, Veenstra GJ. Paranjpe SS, et al. Biochim Biophys Acta. 2015 Jun;1849(6):626-36. doi: 10.1016/j.bbagrm.2015.03.006. Epub 2015 Apr 7. Biochim Biophys Acta. 2015. PMID: 25857441 Free PMC article. Review.
References
- Kornberg RD. Chromatin structure: a repeating unit of histones and DNA. Science. 1974;184:868–871. - PubMed
- Talbert PB, Henikoff S. Histone variants--ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol. 11:264–275. - PubMed
- Peterson CL, Herskowitz I. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell. 1992;68:573–583. - PubMed
- Hirschhorn JN, Brown SA, Clark CD, Winston F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 1992;6:2288–2298. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- R01 NS046789-07S1/NS/NINDS NIH HHS/United States
- R01 NS046789/NS/NINDS NIH HHS/United States
- R01 HD055391/HD/NICHD NIH HHS/United States
- HHMI/Howard Hughes Medical Institute/United States
- R01 HD055391-05/HD/NICHD NIH HHS/United States
- R01 NS046789-07/NS/NINDS NIH HHS/United States
- R01 HD055391-02/HD/NICHD NIH HHS/United States
- R01 HD055391-04/HD/NICHD NIH HHS/United States
- R01 NS046789-08/NS/NINDS NIH HHS/United States
- R01 NS046789-09/NS/NINDS NIH HHS/United States
- R01 HD055391-03/HD/NICHD NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous