A bioinformatic assay for pluripotency in human cells - PubMed (original) (raw)
doi: 10.1038/nmeth.1580. Epub 2011 Mar 6.
Bernhard M Schuldt, Roy Williams, Dylan Mason, Gulsah Altun, Eirini P Papapetrou, Sandra Danner, Johanna E Goldmann, Arne Herbst, Nils O Schmidt, Josef B Aldenhoff, Louise C Laurent, Jeanne F Loring
Affiliations
- PMID: 21378979
- PMCID: PMC3265323
- DOI: 10.1038/nmeth.1580
A bioinformatic assay for pluripotency in human cells
Franz-Josef Müller et al. Nat Methods. 2011 Apr.
Abstract
Pluripotent stem cells (PSCs) are defined by their potential to generate all cell types of an organism. The standard assay for pluripotency of mouse PSCs is cell transmission through the germline, but for human PSCs researchers depend on indirect methods such as differentiation into teratomas in immunodeficient mice. Here we report PluriTest, a robust open-access bioinformatic assay of pluripotency in human cells based on their gene expression profiles.
Figures
Figure 1. A multidimensional data model for assessing pluripotent stem cells
A Schematic for PluriTest. (b–c) We constructed and optimized a multi-class classifier (Pluripotency Score, b, c) and a one-class classifier (Novelty Score, c) to distinguish pluripotent stem cells (PSC) from other cell types and tissues. In (b), we show pluripotent (red) and somatic samples (blue) in the training dataset as assessed with the Pluripotency Score and in (c) with both PluriTest scores. In (d–g), we plot Pluripotency Scores against Novelty Scores for test data set samples. The classifiers were tested against datasets generated on four different microarray platforms: Illumina WG6v1 (c, 177 samples), HT12v3 (d, 498 samples), HT12v4 (e, 38 samples) and Affymetrix U133A (f, 5372 samples)10). Samples for these datasets were independently generated (c and d) or curated from published studies (c, d, f). In d, the lines in the plot indicate empirically determined thresholds for defining normal pluripotent lines (see also Supplementary Fig. 2).
Figure 2. Application of PluriTest
The graphs show the actual output of PluriTest. Pluripotency score is plotted against novelty score for the indicated samples. The background encodes an empirical density map indicating pluripotency (red) and novelty (blue). (a–c) PluriTest results for known pluripotent cells and somatic cells and tissues (a), for fully and partially reprogrammed iPSC lines (b), and for an hESC line (WA09) being differentiated into neural precursors, at the indicated time points. In (d) PluriTest was run on mixed samples of hESC and hESC-derived neural precursor RNA (day 0 and day 14 from c) at the indicated ratios. hESC, human embryonic stem cell, hiPSC, human induced pluripotent stem cell.
Comment in
- Testing pluripotency.
de Souza N. de Souza N. Nat Methods. 2011 Apr;8(4):287. doi: 10.1038/nmeth0411-287. Nat Methods. 2011. PMID: 21574272 No abstract available.
Similar articles
- A guide to stem cell identification: progress and challenges in system-wide predictive testing with complex biomarkers.
Williams R, Schuldt B, Müller FJ. Williams R, et al. Bioessays. 2011 Nov;33(11):880-90. doi: 10.1002/bies.201100073. Epub 2011 Sep 8. Bioessays. 2011. PMID: 21901750 Review. - Gene regulation networks related to neural differentiation of hESC.
Zhong JF, Song Y, Du J, Gamache C, Burke KA, Lund BT, Weiner LP. Zhong JF, et al. Gene Expr. 2007;14(1):23-34. doi: 10.3727/000000007783991781. Gene Expr. 2007. PMID: 17933216 Free PMC article. - Regulatory networks define phenotypic classes of human stem cell lines.
Müller FJ, Laurent LC, Kostka D, Ulitsky I, Williams R, Lu C, Park IH, Rao MS, Shamir R, Schwartz PH, Schmidt NO, Loring JF. Müller FJ, et al. Nature. 2008 Sep 18;455(7211):401-5. doi: 10.1038/nature07213. Epub 2008 Aug 24. Nature. 2008. PMID: 18724358 Free PMC article. - Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure.
Yang Y, Adachi K, Sheridan MA, Alexenko AP, Schust DJ, Schulz LC, Ezashi T, Roberts RM. Yang Y, et al. Proc Natl Acad Sci U S A. 2015 May 5;112(18):E2337-46. doi: 10.1073/pnas.1504778112. Epub 2015 Apr 13. Proc Natl Acad Sci U S A. 2015. PMID: 25870291 Free PMC article. - iPSCs: A Comparison between Animals and Plants.
Sang YL, Cheng ZJ, Zhang XS. Sang YL, et al. Trends Plant Sci. 2018 Aug;23(8):660-666. doi: 10.1016/j.tplants.2018.05.008. Epub 2018 Jun 4. Trends Plant Sci. 2018. PMID: 29880405 Review.
Cited by
- Variability in the generation of induced pluripotent stem cells: importance for disease modeling.
Vitale AM, Matigian NA, Ravishankar S, Bellette B, Wood SA, Wolvetang EJ, Mackay-Sim A. Vitale AM, et al. Stem Cells Transl Med. 2012 Sep;1(9):641-50. doi: 10.5966/sctm.2012-0043. Epub 2012 Sep 7. Stem Cells Transl Med. 2012. PMID: 23197870 Free PMC article. - Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks.
Hossini AM, Megges M, Prigione A, Lichtner B, Toliat MR, Wruck W, Schröter F, Nuernberg P, Kroll H, Makrantonaki E, Zouboulis CC, Adjaye J. Hossini AM, et al. BMC Genomics. 2015 Feb 14;16(1):84. doi: 10.1186/s12864-015-1262-5. BMC Genomics. 2015. PMID: 25765079 Free PMC article. - A Novel Protocol for Directed Differentiation of C9orf72-Associated Human Induced Pluripotent Stem Cells Into Contractile Skeletal Myotubes.
Swartz EW, Baek J, Pribadi M, Wojta KJ, Almeida S, Karydas A, Gao FB, Miller BL, Coppola G. Swartz EW, et al. Stem Cells Transl Med. 2016 Nov;5(11):1461-1472. doi: 10.5966/sctm.2015-0340. Epub 2016 Jul 1. Stem Cells Transl Med. 2016. PMID: 27369896 Free PMC article. - Allele-specific open chromatin in human iPSC neurons elucidates functional disease variants.
Zhang S, Zhang H, Zhou Y, Qiao M, Zhao S, Kozlova A, Shi J, Sanders AR, Wang G, Luo K, Sengupta S, West S, Qian S, Streit M, Avramopoulos D, Cowan CA, Chen M, Pang ZP, Gejman PV, He X, Duan J. Zhang S, et al. Science. 2020 Jul 31;369(6503):561-565. doi: 10.1126/science.aay3983. Science. 2020. PMID: 32732423 Free PMC article. - Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium.
Salomonis N, Dexheimer PJ, Omberg L, Schroll R, Bush S, Huo J, Schriml L, Ho Sui S, Keddache M, Mayhew C, Shanmukhappa SK, Wells J, Daily K, Hubler S, Wang Y, Zambidis E, Margolin A, Hide W, Hatzopoulos AK, Malik P, Cancelas JA, Aronow BJ, Lutzko C. Salomonis N, et al. Stem Cell Reports. 2016 Jul 12;7(1):110-25. doi: 10.1016/j.stemcr.2016.05.006. Epub 2016 Jun 9. Stem Cell Reports. 2016. PMID: 27293150 Free PMC article.
References
- Daley GQ, Lensch MW, Jaenisch R, et al. Cell Stem Cell. 2009;4(3):200. - PubMed
- Takahashi K, Yamanaka S. Cell. 2006;126(4):663. - PubMed
- Müller FJ, Goldmann J, Loser P, et al. Cell Stem Cell. 2010;6(5):412. - PubMed
- Russell WMS, Burch RL. The Principles of Humane Experimental Technique. London: Methuen; 1959.
Publication types
MeSH terms
Grants and funding
- R43 GM085981/GM/NIGMS NIH HHS/United States
- R21 MH087925-02/MH/NIMH NIH HHS/United States
- R21 MH087925/MH/NIMH NIH HHS/United States
- R33 MH087925/MH/NIMH NIH HHS/United States
- R21 MH087925-01/MH/NIMH NIH HHS/United States
- R33 MH087925-03/MH/NIMH NIH HHS/United States
- R43 GM085981-01/GM/NIGMS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials