Crystal structure of metarhodopsin II - PubMed (original) (raw)
. 2011 Mar 31;471(7340):651-5.
doi: 10.1038/nature09789. Epub 2011 Mar 9.
Affiliations
- PMID: 21389988
- DOI: 10.1038/nature09789
Crystal structure of metarhodopsin II
Hui-Woog Choe et al. Nature. 2011.
Abstract
G-protein-coupled receptors (GPCRs) are seven transmembrane helix (TM) proteins that transduce signals into living cells by binding extracellular ligands and coupling to intracellular heterotrimeric G proteins (Gαβγ). The photoreceptor rhodopsin couples to transducin and bears its ligand 11-cis-retinal covalently bound via a protonated Schiff base to the opsin apoprotein. Absorption of a photon causes retinal cis/trans isomerization and generates the agonist all-trans-retinal in situ. After early photoproducts, the active G-protein-binding intermediate metarhodopsin II (Meta II) is formed, in which the retinal Schiff base is still intact but deprotonated. Dissociation of the proton from the Schiff base breaks a major constraint in the protein and enables further activating steps, including an outward tilt of TM6 and formation of a large cytoplasmic crevice for uptake of the interacting C terminus of the Gα subunit. Owing to Schiff base hydrolysis, Meta II is short-lived and notoriously difficult to crystallize. We therefore soaked opsin crystals with all-trans-retinal to form Meta II, presuming that the crystal's high concentration of opsin in an active conformation (Ops*) may facilitate all-trans-retinal uptake and Schiff base formation. Here we present the 3.0 Å and 2.85 Å crystal structures, respectively, of Meta II alone or in complex with an 11-amino-acid C-terminal fragment derived from Gα (GαCT2). GαCT2 binds in a large crevice at the cytoplasmic side, akin to the binding of a similar Gα-derived peptide to Ops* (ref. 7). In the Meta II structures, the electron density from the retinal ligand seamlessly continues into the Lys 296 side chain, reflecting proper formation of the Schiff base linkage. The retinal is in a relaxed conformation and almost undistorted compared with pure crystalline all-trans-retinal. By comparison with early photoproducts we propose how retinal translocation and rotation induce the gross conformational changes characteristic for Meta II. The structures can now serve as models for the large GPCR family.
Similar articles
- Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization.
Ritter E, Zimmermann K, Heck M, Hofmann KP, Bartl FJ. Ritter E, et al. J Biol Chem. 2004 Nov 12;279(46):48102-11. doi: 10.1074/jbc.M406857200. Epub 2004 Aug 20. J Biol Chem. 2004. PMID: 15322129 - A ligand channel through the G protein coupled receptor opsin.
Hildebrand PW, Scheerer P, Park JH, Choe HW, Piechnick R, Ernst OP, Hofmann KP, Heck M. Hildebrand PW, et al. PLoS One. 2009;4(2):e4382. doi: 10.1371/journal.pone.0004382. Epub 2009 Feb 5. PLoS One. 2009. PMID: 19194506 Free PMC article. - Crystal structure of opsin in its G-protein-interacting conformation.
Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, Ernst OP. Scheerer P, et al. Nature. 2008 Sep 25;455(7212):497-502. doi: 10.1038/nature07330. Nature. 2008. PMID: 18818650 - Coupling of protonation switches during rhodopsin activation.
Vogel R, Sakmar TP, Sheves M, Siebert F. Vogel R, et al. Photochem Photobiol. 2007 Mar-Apr;83(2):286-92. doi: 10.1562/2006-06-19-IR-937. Photochem Photobiol. 2007. PMID: 17576345 Review. - Activity switches of rhodopsin.
Ritter E, Elgeti M, Bartl FJ. Ritter E, et al. Photochem Photobiol. 2008 Jul-Aug;84(4):911-20. doi: 10.1111/j.1751-1097.2008.00324.x. Epub 2008 Apr 18. Photochem Photobiol. 2008. PMID: 18422873 Review.
Cited by
- Molecular recognition of ketamine by a subset of olfactory G protein-coupled receptors.
Ho J, Perez-Aguilar JM, Gao L, Saven JG, Matsunami H, Eckenhoff RG. Ho J, et al. Sci Signal. 2015 Mar 31;8(370):ra33. doi: 10.1126/scisignal.2005912. Sci Signal. 2015. PMID: 25829447 Free PMC article. - A key agonist-induced conformational change in the cannabinoid receptor CB1 is blocked by the allosteric ligand Org 27569.
Fay JF, Farrens DL. Fay JF, et al. J Biol Chem. 2012 Sep 28;287(40):33873-82. doi: 10.1074/jbc.M112.352328. Epub 2012 Jul 30. J Biol Chem. 2012. PMID: 22846992 Free PMC article. - Early Proton Transfer Reaction in a Primate Blue-Sensitive Visual Pigment.
Mizuno Y, Katayama K, Imai H, Kandori H. Mizuno Y, et al. Biochemistry. 2022 Dec 6;61(23):2698-2708. doi: 10.1021/acs.biochem.2c00483. Epub 2022 Nov 18. Biochemistry. 2022. PMID: 36399519 Free PMC article. - Structural insights into µ-opioid receptor activation.
Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, Kato HE, Livingston KE, Thorsen TS, Kling RC, Granier S, Gmeiner P, Husbands SM, Traynor JR, Weis WI, Steyaert J, Dror RO, Kobilka BK. Huang W, et al. Nature. 2015 Aug 20;524(7565):315-21. doi: 10.1038/nature14886. Epub 2015 Aug 5. Nature. 2015. PMID: 26245379 Free PMC article. - Sequence, structure and ligand binding evolution of rhodopsin-like G protein-coupled receptors: a crystal structure-based phylogenetic analysis.
Wolf S, Grünewald S. Wolf S, et al. PLoS One. 2015 Apr 16;10(4):e0123533. doi: 10.1371/journal.pone.0123533. eCollection 2015. PLoS One. 2015. PMID: 25881057 Free PMC article.
References
- J Mol Biol. 2007 Sep 28;372(4):906-917 - PubMed
- Proc Natl Acad Sci U S A. 2009 May 26;106(21):8555-60 - PubMed
- Angew Chem Int Ed Engl. 2006 Jun 26;45(26):4270-3 - PubMed
- Nat Struct Mol Biol. 2009 Feb;16(2):168-75 - PubMed
- J Mol Biol. 1994 May 20;238(5):777-93 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases