Disruption of genes encoding subunits of yeast vacuolar H(+)-ATPase causes conditional lethality - PubMed (original) (raw)
Disruption of genes encoding subunits of yeast vacuolar H(+)-ATPase causes conditional lethality
H Nelson et al. Proc Natl Acad Sci U S A. 1990 May.
Abstract
The main function of vacuolar H(+)-ATPases in eukaryotic cells is to generate proton and electrochemical gradients across the membranes of the vacuolar system. The enzyme is composed of a catalytic sector with five subunits (A-E) and a membrane sector containing at least two subunits (a and c). We disrupted two genes of this enzyme, in yeast cells, one encoding a subunit of the membrane sector (subunit c) and another encoding a subunit of the catalytic sector (subunit B). The resulting mutants did not grow in medium with a pH value higher than 6.5 and grew well only within a narrow pH range around 5.5. Transformation of the mutants with plasmids containing the corresponding genes repaired the mutations. Thus failure to lower the pH in the vacuolar system of yeast, and probably other eukaryotic cells, is lethal and the mutants may survive only if a low external pH allows for this acidification by fluid-phase endocytosis.
Similar articles
- The Saccharomyces cerevisiae VMA6 gene encodes the 36-kDa subunit of the vacuolar H(+)-ATPase membrane sector.
Bauerle C, Ho MN, Lindorfer MA, Stevens TH. Bauerle C, et al. J Biol Chem. 1993 Jun 15;268(17):12749-57. J Biol Chem. 1993. PMID: 8509410 - The Saccharomyces cerevisiae VMA7 gene encodes a 14-kDa subunit of the vacuolar H(+)-ATPase catalytic sector.
Nelson H, Mandiyan S, Nelson N. Nelson H, et al. J Biol Chem. 1994 Sep 30;269(39):24150-5. J Biol Chem. 1994. PMID: 7929071 - Structure and function of the yeast vacuolar membrane proton ATPase.
Anraku Y, Umemoto N, Hirata R, Wada Y. Anraku Y, et al. J Bioenerg Biomembr. 1989 Oct;21(5):589-603. doi: 10.1007/BF00808115. J Bioenerg Biomembr. 1989. PMID: 2531738 Review. - The cellular biology of proton-motive force generation by V-ATPases.
Nelson N, Perzov N, Cohen A, Hagai K, Padler V, Nelson H. Nelson N, et al. J Exp Biol. 2000 Jan;203(Pt 1):89-95. doi: 10.1242/jeb.203.1.89. J Exp Biol. 2000. PMID: 10600677 Review.
Cited by
- PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress.
Ding J, Holzwarth G, Bradford CS, Cooley B, Yoshinaga AS, Patton-Vogt J, Abeliovich H, Penner MH, Bakalinsky AT. Ding J, et al. Appl Microbiol Biotechnol. 2015 Oct;99(20):8667-80. doi: 10.1007/s00253-015-6708-9. Epub 2015 Jun 9. Appl Microbiol Biotechnol. 2015. PMID: 26051671 Free PMC article. - Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector.
Xu L, Shen X, Bryan A, Banga S, Swanson MS, Luo ZQ. Xu L, et al. PLoS Pathog. 2010 Mar 19;6(3):e1000822. doi: 10.1371/journal.ppat.1000822. PLoS Pathog. 2010. PMID: 20333253 Free PMC article. - The yeast lysosome-like vacuole: endpoint and crossroads.
Li SC, Kane PM. Li SC, et al. Biochim Biophys Acta. 2009 Apr;1793(4):650-63. doi: 10.1016/j.bbamcr.2008.08.003. Epub 2008 Aug 13. Biochim Biophys Acta. 2009. PMID: 18786576 Free PMC article. Review. - The vacuolar ATPase of Neurospora crassa is indispensable: inactivation of the vma-1 gene by repeat-induced point mutation.
Ferea TL, Bowman BJ. Ferea TL, et al. Genetics. 1996 May;143(1):147-54. doi: 10.1093/genetics/143.1.147. Genetics. 1996. PMID: 8722770 Free PMC article. - Rapid Nuclear Exclusion of Hcm1 in Aging Saccharomyces cerevisiae Leads to Vacuolar Alkalization and Replicative Senescence.
Ghavidel A, Baxi K, Prusinkiewicz M, Swan C, Belak ZR, Eskiw CH, Carvalho CE, Harkness TA. Ghavidel A, et al. G3 (Bethesda). 2018 May 4;8(5):1579-1592. doi: 10.1534/g3.118.200161. G3 (Bethesda). 2018. PMID: 29519938 Free PMC article.
References
- J Cell Biol. 1986 May;102(5):1551-7 - PubMed
- Cell. 1989 Feb 10;56(3):357-68 - PubMed
- J Biol Chem. 1989 Jan 25;264(3):1775-8 - PubMed
- Proc Natl Acad Sci U S A. 1988 Nov;85(21):7972-6 - PubMed
- Biochim Biophys Acta. 1989 Apr 14;980(2):241-7 - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases