Hepoxilin A(3) protects β-cells from apoptosis in contrast to its precursor, 12-hydroperoxyeicosatetraenoic acid - PubMed (original) (raw)
. 2011 Jun;1811(6):361-9.
doi: 10.1016/j.bbalip.2011.03.002. Epub 2011 Mar 17.
Affiliations
- PMID: 21420506
- DOI: 10.1016/j.bbalip.2011.03.002
Hepoxilin A(3) protects β-cells from apoptosis in contrast to its precursor, 12-hydroperoxyeicosatetraenoic acid
Maria-Patapia Zafiriou et al. Biochim Biophys Acta. 2011 Jun.
Abstract
Pancreatic β-cells have a deficit of scavenging enzymes such as catalase (Cat) and glutathione peroxidase (GPx) and therefore are susceptible to oxidative stress and apoptosis. Our previous work showed that, in the absence of cytosolic GPx in insulinoma RINm5F cells, an intrinsic activity of 12 lipoxygenase (12(S)-LOX) converts 12S-hydroperoxyeicosatetraenoic acid (12(S)-HpETE) to the bioactive epoxide hepoxilin A(3) (HXA(3)). The aim of the present study was to investigate the effect of HXA(3) on apoptosis as compared to its precursor 12(S)-HpETE and shed light upon the underlying pathways. In contrast to 12(S)-HpETE, which induced apoptosis via the extrinsic pathway, we found HXA(3) not only to prevent it but also to promote cell proliferation. In particular, HXA(3) suppressed the pro-apoptotic BAX and upregulated the anti-apoptotic Bcl-2. Moreover, HXA(3) induced the anti-apoptotic 12(S)-LOX by recruiting heat shock protein 90 (HSP90), another anti-apoptotic protein. Finally, a co-chaperone protein of HSP90, protein phosphatase 5 (PP5), was upregulated by HXA(3), which counteracted oxidative stress-induced apoptosis by dephosphorylating and thus inactivating apoptosis signal-regulating kinase 1 (ASK1). Taken together, these findings suggest that HXA(3) protects insulinoma cells from oxidative stress and, via multiple signaling pathways, prevents them from undergoing apoptosis.
Copyright © 2011 Elsevier B.V. All rights reserved.
Similar articles
- Structure, biochemistry and biology of hepoxilins: an update.
Nigam S, Zafiriou MP, Deva R, Ciccoli R, Roux-Van der Merwe R. Nigam S, et al. FEBS J. 2007 Jul;274(14):3503-3512. doi: 10.1111/j.1742-4658.2007.05910.x. Epub 2007 Jul 2. FEBS J. 2007. PMID: 17608719 Review. - Biosynthesis of hepoxilins: evidence for the presence of a hepoxilin synthase activity in rat insulinoma cells.
Shankaranarayanan P, Ciccoli R, Nigam S. Shankaranarayanan P, et al. FEBS Lett. 2003 Mar 13;538(1-3):107-12. doi: 10.1016/s0014-5793(03)00151-0. FEBS Lett. 2003. PMID: 12633862 - Hepoxilin A3 synthase.
Nigam S, Zafiriou MP. Nigam S, et al. Biochem Biophys Res Commun. 2005 Dec 9;338(1):161-8. doi: 10.1016/j.bbrc.2005.09.065. Epub 2005 Sep 21. Biochem Biophys Res Commun. 2005. PMID: 16198304 Review. - Protein phosphatase with EF-hand domains 2 (PPEF2) is a potent negative regulator of apoptosis signal regulating kinase-1 (ASK1).
Kutuzov MA, Bennett N, Andreeva AV. Kutuzov MA, et al. Int J Biochem Cell Biol. 2010 Nov;42(11):1816-22. doi: 10.1016/j.biocel.2010.07.014. Epub 2010 Jul 30. Int J Biochem Cell Biol. 2010. PMID: 20674765 - Gambogic acid induces apoptosis by regulating the expression of Bax and Bcl-2 and enhancing caspase-3 activity in human malignant melanoma A375 cells.
Xu X, Liu Y, Wang L, He J, Zhang H, Chen X, Li Y, Yang J, Tao J. Xu X, et al. Int J Dermatol. 2009 Feb;48(2):186-92. doi: 10.1111/j.1365-4632.2009.03946.x. Int J Dermatol. 2009. PMID: 19200201
Cited by
- Arachidonic acid metabolism in health and disease.
Zhang Y, Liu Y, Sun J, Zhang W, Guo Z, Ma Q. Zhang Y, et al. MedComm (2020). 2023 Sep 20;4(5):e363. doi: 10.1002/mco2.363. eCollection 2023 Oct. MedComm (2020). 2023. PMID: 37746665 Free PMC article. Review. - Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets.
Wang B, Wu L, Chen J, Dong L, Chen C, Wen Z, Hu J, Fleming I, Wang DW. Wang B, et al. Signal Transduct Target Ther. 2021 Feb 26;6(1):94. doi: 10.1038/s41392-020-00443-w. Signal Transduct Target Ther. 2021. PMID: 33637672 Free PMC article. Review. - Preclinical evidence for the therapeutic value of TBX5 normalization in arrhythmia control.
Rathjens FS, Blenkle A, Iyer LM, Renger A, Syeda F, Noack C, Jungmann A, Dewenter M, Toischer K, El-Armouche A, Müller OJ, Fabritz L, Zimmermann WH, Zelarayan LC, Zafeiriou MP. Rathjens FS, et al. Cardiovasc Res. 2021 Jul 7;117(8):1908-1922. doi: 10.1093/cvr/cvaa239. Cardiovasc Res. 2021. PMID: 32777030 Free PMC article. - Arachidonic Acid Metabolites in Cardiovascular and Metabolic Diseases.
Sonnweber T, Pizzini A, Nairz M, Weiss G, Tancevski I. Sonnweber T, et al. Int J Mol Sci. 2018 Oct 23;19(11):3285. doi: 10.3390/ijms19113285. Int J Mol Sci. 2018. PMID: 30360467 Free PMC article. Review. - Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15).
Ivanov I, Kuhn H, Heydeck D. Ivanov I, et al. Gene. 2015 Nov 15;573(1):1-32. doi: 10.1016/j.gene.2015.07.073. Epub 2015 Jul 26. Gene. 2015. PMID: 26216303 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous