Probe Report for NOX1 Inhibitors - PubMed (original) (raw)

Review

In: Probe Reports from the NIH Molecular Libraries Program [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010.

2009 Apr 23 [updated 2010 Sep 2].

Free Books & Documents

Review

Probe Report for NOX1 Inhibitors

SJ Brown et al.

Free Books & Documents

Excerpt

NADPH oxidase 1 (NOX1) is highly expressed in colon epithelial cells, where it generates reactive oxygen species (ROS) to interact with normal and pathogenic bacteria. Excessive reactive ROS production is associated with damage to the intestinal mucosa, particularly in mucosal lesions of inflammatory bowel disease (IBD). Studies have shown that NOX1 levels are increased in human prostate cancer, and might also play a role in angiogenesis, cell growth, and tumor pathogenesis. The identification of potent, selective inhibitors of NOX1 may lead to potential therapeutic candidates for excess cell proliferation, cancer, and IBD. This project demonstrated that the molecular probe ML090 (CID-616479) is neither a hydrogen peroxide scavenger, nor a general cell toxin on the time scale of cellular NOX inhibition assays. The specificity of the probe for NOX1 over NOX2, 3 and 4 in a 293 assay system suggests that a target specific to the NOX1 system is the molecular target. ML090 should serve as a useful probe for cellular systems where inhibition of NOX1, and not other members of the NOX family, is desired. This compound provides a significant improvement over the previously existing non-selective NOX inhibitor, diphenylene iodium.

PubMed Disclaimer

Sections

References

    1. Takeya R, Sumimoto H. Molecular mechanism for activation of superoxide-producing NADPH oxidases. Mol Cells. 2003;16:271–277. - PubMed
    1. Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD. Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene. 2001;269:131–140. - PubMed
    1. Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, Lambeth JD. Cell transformation by the superoxide-generating oxidase Mox1. Nature. 1999;401:79–82. - PubMed
    1. Szanto I, Rubbia-Brandt L, Kiss P, Steger K, Banfi B, Kovari E, Herrmann F, Hadengue A, Krause KH. Expression of NOX1, a superoxide-generating NADPH oxidase, in colon cancer and inflammatory bowel disease. J Pathol. 2005;207:164–176. - PubMed
    1. Rokutan K, Kawahara T, Kuwano Y, Tominaga K, Nishida K, Teshima-Kondo S. Nox enzymes and oxidative stress in the immunopathology of the gastrointestinal tract. Semin Immunopathol. 2008;30:315–327. - PubMed

Publication types

LinkOut - more resources