MEME-ChIP: motif analysis of large DNA datasets - PubMed (original) (raw)
MEME-ChIP: motif analysis of large DNA datasets
Philip Machanick et al. Bioinformatics. 2011.
Abstract
Motivation: Advances in high-throughput sequencing have resulted in rapid growth in large, high-quality datasets including those arising from transcription factor (TF) ChIP-seq experiments. While there are many existing tools for discovering TF binding site motifs in such datasets, most web-based tools cannot directly process such large datasets.
Results: The MEME-ChIP web service is designed to analyze ChIP-seq 'peak regions'--short genomic regions surrounding declared ChIP-seq 'peaks'. Given a set of genomic regions, it performs (i) ab initio motif discovery, (ii) motif enrichment analysis, (iii) motif visualization, (iv) binding affinity analysis and (v) motif identification. It runs two complementary motif discovery algorithms on the input data--MEME and DREME--and uses the motifs they discover in subsequent visualization, binding affinity and identification steps. MEME-ChIP also performs motif enrichment analysis using the AME algorithm, which can detect very low levels of enrichment of binding sites for TFs with known DNA-binding motifs. Importantly, unlike with the MEME web service, there is no restriction on the size or number of uploaded sequences, allowing very large ChIP-seq datasets to be analyzed. The analyses performed by MEME-ChIP provide the user with a varied view of the binding and regulatory activity of the ChIP-ed TF, as well as the possible involvement of other DNA-binding TFs.
Availability: MEME-ChIP is available as part of the MEME Suite at http://meme.nbcr.net.
Figures
Fig. 1.
Two most significant motifs found by the MEME, DREME and AME algorithms in the SCL ChIP-seq data. For MEME and DREME motifs, the motif Logo (bottom) is shown aligned with the most similar JASPAR motif Logo (top) if the similarity is significant (E ≤ 0.05).
Similar articles
- DREME: motif discovery in transcription factor ChIP-seq data.
Bailey TL. Bailey TL. Bioinformatics. 2011 Jun 15;27(12):1653-9. doi: 10.1093/bioinformatics/btr261. Epub 2011 May 4. Bioinformatics. 2011. PMID: 21543442 Free PMC article. - Inferring direct DNA binding from ChIP-seq.
Bailey TL, Machanick P. Bailey TL, et al. Nucleic Acids Res. 2012 Sep 1;40(17):e128. doi: 10.1093/nar/gks433. Epub 2012 May 18. Nucleic Acids Res. 2012. PMID: 22610855 Free PMC article. - EXTREME: an online EM algorithm for motif discovery.
Quang D, Xie X. Quang D, et al. Bioinformatics. 2014 Jun 15;30(12):1667-73. doi: 10.1093/bioinformatics/btu093. Epub 2014 Feb 14. Bioinformatics. 2014. PMID: 24532725 Free PMC article. - A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data.
Tran NT, Huang CH. Tran NT, et al. Biol Direct. 2014 Feb 20;9:4. doi: 10.1186/1745-6150-9-4. Biol Direct. 2014. PMID: 24555784 Free PMC article. Review. - Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond.
Mundade R, Ozer HG, Wei H, Prabhu L, Lu T. Mundade R, et al. Cell Cycle. 2014;13(18):2847-52. doi: 10.4161/15384101.2014.949201. Cell Cycle. 2014. PMID: 25486472 Free PMC article. Review.
Cited by
- SlSTOP1-regulated SlHAK5 expression confers Al tolerance in tomato by facilitating citrate secretion from roots.
Zhu H, Chen W, Yang Z, Zeng C, Fan W, Yang J. Zhu H, et al. Hortic Res. 2024 Oct 2;11(11):uhae282. doi: 10.1093/hr/uhae282. eCollection 2024 Nov. Hortic Res. 2024. PMID: 39545040 Free PMC article. - START domains generate paralog-specific regulons from a single network architecture.
Holub AS, Choudury SG, Andrianova EP, Dresden CE, Camacho RU, Zhulin IB, Husbands AY. Holub AS, et al. Nat Commun. 2024 Nov 14;15(1):9861. doi: 10.1038/s41467-024-54269-z. Nat Commun. 2024. PMID: 39543118 Free PMC article. - The molecular consequences of FOXF1 missense mutations associated with alveolar capillary dysplasia with misalignment of pulmonary veins.
Edel GG, van Kempen M, Munck AB, Huisman CN, Naalden CAP, Brouwer RWW, Koornneef S, van IJcken WFJ, Wijnen RMH, Rottier RJ. Edel GG, et al. J Biomed Sci. 2024 Nov 4;31(1):100. doi: 10.1186/s12929-024-01088-5. J Biomed Sci. 2024. PMID: 39497128 Free PMC article. - A dual role for PSIP1/LEDGF in T cell acute lymphoblastic leukemia.
Demoen L, Matthijssens F, Reunes L, Palhais B, Lintermans B, T'Sas S, Fijalkowski I, Taminau J, Akele MZ, Van Belle S, Taghon T, Deforce D, Van Nieuwerburgh F, Berx G, Ntziachristos P, Debyser Z, Durinck K, Pieters T, Goossens S, Van Vlierberghe P. Demoen L, et al. Sci Adv. 2024 Nov;10(44):eado6765. doi: 10.1126/sciadv.ado6765. Epub 2024 Nov 1. Sci Adv. 2024. PMID: 39485844 Free PMC article. - Integrative Analysis of ATAC-Seq and RNA-Seq through Machine Learning Identifies 10 Signature Genes for Breast Cancer Intrinsic Subtypes.
Park JW, Rhee JK. Park JW, et al. Biology (Basel). 2024 Oct 7;13(10):799. doi: 10.3390/biology13100799. Biology (Basel). 2024. PMID: 39452108 Free PMC article.
References
- Bailey TL, Gribskov M. Combining evidence using p-values: application to sequence homology searches. Bioinformatics. 1998;14:48–54. - PubMed
- Ettwiller L, et al. Trawler: de novo regulatory motif discovery pipeline for chromatin immunoprecipitation. Nat. Methods. 2007;4:563–565. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous