DNA extraction from paraffin embedded material for genetic and epigenetic analyses - PubMed (original) (raw)

DNA extraction from paraffin embedded material for genetic and epigenetic analyses

Larissa A Pikor et al. J Vis Exp. 2011.

Abstract

Disease development and progression are characterized by frequent genetic and epigenetic aberrations including chromosomal rearrangements, copy number gains and losses and DNA methylation. Advances in high-throughput, genome-wide profiling technologies, such as microarrays, have significantly improved our ability to identify and detect these specific alterations. However as technology continues to improve, a limiting factor remains sample quality and availability. Furthermore, follow-up clinical information and disease outcome are often collected years after the initial specimen collection. Specimens, typically formalin-fixed and paraffin embedded (FFPE), are stored in hospital archives for years to decades. DNA can be efficiently and effectively recovered from paraffin-embedded specimens if the appropriate method of extraction is applied. High quality DNA extracted from properly preserved and stored specimens can support quantitative assays for comparisons of normal and diseased tissues and generation of genetic and epigenetic signatures (1). To extract DNA from paraffin-embedded samples, tissue cores or microdissected tissue are subjected to xylene treatment, which dissolves the paraffin from the tissue, and then rehydrated using a series of ethanol washes. Proteins and harmful enzymes such as nucleases are subsequently digested by proteinase K. The addition of lysis buffer, which contains denaturing agents such as sodium dodecyl sulfate (SDS), facilitates digestion (2). Nucleic acids are purified from the tissue lysate using buffer-saturated phenol and high speed centrifugation which generates a biphasic solution. DNA and RNA remain in the upper aqueous phase, while proteins, lipids and polysaccharides are sequestered in the inter- and organic-phases respectively. Retention of the aqueous phase and repeated phenol extractions generates a clean sample. Following phenol extractions, RNase A is added to eliminate contaminating RNA. Additional phenol extractions following incubation with RNase A are used to remove any remaining enzyme. The addition of sodium acetate and isopropanol precipitates DNA, and high speed centrifugation is used to pellet the DNA and facilitate isopropanol removal. Excess salts carried over from precipitation can interfere with subsequent enzymatic assays, but can be removed from the DNA by washing with 70% ethanol, followed by centrifugation to re-pellet the DNA (3). DNA is re-suspended in distilled water or the buffer of choice, quantified and stored at -20°C. Purified DNA can subsequently be used in downstream applications which include, but are not limited to, PCR, array comparative genomic hybridization (4) (array CGH), methylated DNA Immunoprecipitation (MeDIP) and sequencing, allowing for an integrative analysis of tissue/tumor samples.

PubMed Disclaimer

Figures

None

Similar articles

Cited by

References

    1. Santos MC, Saito CP, Line SR. Extraction of genomic DNA from paraffin-embedded tissue sections of human fetuses fixed and stored in formalin for long periods. Pathol Res Pract. 2008;204:633–636. - PubMed
    1. Hilz H, Wiegers U, Adamietz P. Stimulation of proteinase K action by denaturing agents: application to the isolation of nucleic acids and the degradation of 'masked' proteins. Eur J Biochem. 1975;56:103–108. - PubMed
    1. Sambrook Joseph, R D. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2001.
    1. Kennett JY, Watson SK, Saprunoff H, Heryet C, Lam WL. Technical demonstration of whole genome array comparative genomic hybridization. J Vis Exp. 2008. - PMC - PubMed
    1. Thu KL. Methylated DNA immunoprecipitation. J Vis Exp. 2009. - PMC - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources