DNA origami with complex curvatures in three-dimensional space - PubMed (original) (raw)
. 2011 Apr 15;332(6027):342-6.
doi: 10.1126/science.1202998.
Affiliations
- PMID: 21493857
- DOI: 10.1126/science.1202998
DNA origami with complex curvatures in three-dimensional space
Dongran Han et al. Science. 2011.
Abstract
We present a strategy to design and construct self-assembling DNA nanostructures that define intricate curved surfaces in three-dimensional (3D) space using the DNA origami folding technique. Double-helical DNA is bent to follow the rounded contours of the target object, and potential strand crossovers are subsequently identified. Concentric rings of DNA are used to generate in-plane curvature, constrained to 2D by rationally designed geometries and crossover networks. Out-of-plane curvature is introduced by adjusting the particular position and pattern of crossovers between adjacent DNA double helices, whose conformation often deviates from the natural, B-form twist density. A series of DNA nanostructures with high curvature--such as 2D arrangements of concentric rings and 3D spherical shells, ellipsoidal shells, and a nanoflask--were assembled.
Similar articles
- Programmed-assembly system using DNA jigsaw pieces.
Endo M, Sugita T, Katsuda Y, Hidaka K, Sugiyama H. Endo M, et al. Chemistry. 2010 May 10;16(18):5362-8. doi: 10.1002/chem.200903057. Chemistry. 2010. PMID: 20391568 - Isothermal assembly of DNA origami structures using denaturing agents.
Jungmann R, Liedl T, Sobey TL, Shih W, Simmel FC. Jungmann R, et al. J Am Chem Soc. 2008 Aug 6;130(31):10062-3. doi: 10.1021/ja8030196. Epub 2008 Jul 10. J Am Chem Soc. 2008. PMID: 18613687 - Programmed two-dimensional self-assembly of multiple DNA origami jigsaw pieces.
Rajendran A, Endo M, Katsuda Y, Hidaka K, Sugiyama H. Rajendran A, et al. ACS Nano. 2011 Jan 25;5(1):665-71. doi: 10.1021/nn1031627. Epub 2010 Dec 28. ACS Nano. 2011. PMID: 21188996 - DNA origami: fold, stick, and beyond.
Kuzuya A, Komiyama M. Kuzuya A, et al. Nanoscale. 2010 Mar;2(3):310-22. doi: 10.1039/b9nr00246d. Epub 2009 Nov 24. Nanoscale. 2010. PMID: 20644813 Review. - Overview of DNA origami for molecular self-assembly.
Saaem I, LaBean TH. Saaem I, et al. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013 Mar-Apr;5(2):150-62. doi: 10.1002/wnan.1204. Epub 2013 Jan 17. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013. PMID: 23335504 Review.
Cited by
- Scaling down DNA circuits with competitive neural networks.
Genot AJ, Fujii T, Rondelez Y. Genot AJ, et al. J R Soc Interface. 2013 Jun 12;10(85):20130212. doi: 10.1098/rsif.2013.0212. Print 2013 Aug 6. J R Soc Interface. 2013. PMID: 23760296 Free PMC article. - Programmable DNA Nanosystem for Molecular Interrogation.
Mathur D, Henderson ER. Mathur D, et al. Sci Rep. 2016 Jun 7;6:27413. doi: 10.1038/srep27413. Sci Rep. 2016. PMID: 27270162 Free PMC article. - DNA-Based Molecular Machines.
Mao X, Liu M, Li Q, Fan C, Zuo X. Mao X, et al. JACS Au. 2022 Oct 21;2(11):2381-2399. doi: 10.1021/jacsau.2c00292. eCollection 2022 Nov 28. JACS Au. 2022. PMID: 36465542 Free PMC article. Review. - Cell origami: self-folding of three-dimensional cell-laden microstructures driven by cell traction force.
Kuribayashi-Shigetomi K, Onoe H, Takeuchi S. Kuribayashi-Shigetomi K, et al. PLoS One. 2012;7(12):e51085. doi: 10.1371/journal.pone.0051085. Epub 2012 Dec 12. PLoS One. 2012. PMID: 23251426 Free PMC article. - Tetrahedral DNA nanostructures as drug delivery and bioimaging platforms in cancer therapy.
Duangrat R, Udomprasert A, Kangsamaksin T. Duangrat R, et al. Cancer Sci. 2020 Sep;111(9):3164-3173. doi: 10.1111/cas.14548. Epub 2020 Jul 20. Cancer Sci. 2020. PMID: 32589345 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources