High-resolution characterization of a hepatocellular carcinoma genome - PubMed (original) (raw)
doi: 10.1038/ng.804. Epub 2011 Apr 17.
Kenji Tatsuno, Shogo Yamamoto, Yasuhito Arai, Fumie Hosoda, Shumpei Ishikawa, Shuichi Tsutsumi, Kohtaro Sonoda, Hirohiko Totsuka, Takuya Shirakihara, Hiromi Sakamoto, Linghua Wang, Hidenori Ojima, Kazuaki Shimada, Tomoo Kosuge, Takuji Okusaka, Kazuto Kato, Jun Kusuda, Teruhiko Yoshida, Hiroyuki Aburatani, Tatsuhiro Shibata
Affiliations
- PMID: 21499249
- DOI: 10.1038/ng.804
High-resolution characterization of a hepatocellular carcinoma genome
Yasushi Totoki et al. Nat Genet. 2011 May.
Abstract
Hepatocellular carcinoma, one of the most common virus-associated cancers, is the third most frequent cause of cancer-related death worldwide. By massively parallel sequencing of a primary hepatitis C virus-positive hepatocellular carcinoma (36× coverage) and matched lymphocytes (>28× coverage) from the same individual, we identified more than 11,000 somatic substitutions of the tumor genome that showed predominance of T>C/A>G transition and a decrease of the T>C substitution on the transcribed strand, suggesting preferential DNA repair. Gene annotation enrichment analysis of 63 validated non-synonymous substitutions revealed enrichment of phosphoproteins. We further validated 22 chromosomal rearrangements, generating four fusion transcripts that had altered transcriptional regulation (BCORL1-ELF4) or promoter activity. Whole-exome sequencing at a higher sequence depth (>76× coverage) revealed a TSC1 nonsense substitution in a subpopulation of the tumor cells. This first high-resolution characterization of a virus-associated cancer genome identified previously uncharacterized mutation patterns, intra-chromosomal rearrangements and fusion genes, as well as genetic heterogeneity within the tumor.
Comment in
- Hepatocellular carcinoma enters the sequencing era.
Villanueva A, Hoshida Y, Llovet JM. Villanueva A, et al. Gastroenterology. 2011 Nov;141(5):1943-5. doi: 10.1053/j.gastro.2011.09.027. Epub 2011 Sep 29. Gastroenterology. 2011. PMID: 21963842 Free PMC article. No abstract available.
Similar articles
- [Oncogenes and suppressor oncogenes in C-type hepatocellular carcinoma].
Tsukiyama-Kohara K. Tsukiyama-Kohara K. Nihon Rinsho. 2004 Jul;62 Suppl 7(Pt 1):619-23. Nihon Rinsho. 2004. PMID: 15359872 Review. Japanese. No abstract available. - Comprehensive genome sequencing of the liver cancer genome.
Nakagawa H, Shibata T. Nakagawa H, et al. Cancer Lett. 2013 Nov 1;340(2):234-40. doi: 10.1016/j.canlet.2012.10.035. Epub 2012 Nov 8. Cancer Lett. 2013. PMID: 23142287 Review. - Recent advancements in comprehensive genetic analyses for human hepatocellular carcinoma.
Nishida N, Kudo M. Nishida N, et al. Oncology. 2013;84 Suppl 1:93-7. doi: 10.1159/000345897. Epub 2013 Feb 20. Oncology. 2013. PMID: 23428866 Review. - Genetic aspects of hepatocellular carcinogenesis.
Ozturk M. Ozturk M. Semin Liver Dis. 1999;19(3):235-42. doi: 10.1055/s-2007-1007113. Semin Liver Dis. 1999. PMID: 10518303 Review. - Variable Intra-Tumor Genomic Heterogeneity of Multiple Lesions in Patients With Hepatocellular Carcinoma.
Xue R, Li R, Guo H, Guo L, Su Z, Ni X, Qi L, Zhang T, Li Q, Zhang Z, Xie XS, Bai F, Zhang N. Xue R, et al. Gastroenterology. 2016 Apr;150(4):998-1008. doi: 10.1053/j.gastro.2015.12.033. Epub 2016 Jan 2. Gastroenterology. 2016. PMID: 26752112
Cited by
- Multiple asynchronous recurrence as a predictive factor for refractoriness against locoregional and surgical therapy in patients with intermediate-stage hepatocellular carcinoma.
Kasuga R, Taniki N, Chu PS, Tamura M, Tabuchi T, Yamaguchi A, Hayatsu S, Koizumi J, Ojiro K, Hoshi H, Kaneko F, Morikawa R, Noguchi F, Yamataka K, Usui S, Ebinuma H, Itano O, Hasegawa Y, Abe Y, Kitago M, Inoue M, Nakatsuka S, Jinzaki M, Kitagawa Y, Kanai T, Nakamoto N. Kasuga R, et al. Sci Rep. 2024 May 13;14(1):10896. doi: 10.1038/s41598-024-61611-4. Sci Rep. 2024. PMID: 38740983 Free PMC article. - Unmet needs in the post-direct-acting antivirals era: The risk and molecular mechanisms of hepatocellular carcinoma after hepatitis C virus eradication.
Huang CF, Awad MH, Gal-Tanamy M, Yu ML. Huang CF, et al. Clin Mol Hepatol. 2024 Jul;30(3):326-344. doi: 10.3350/cmh.2024.0155. Epub 2024 Apr 26. Clin Mol Hepatol. 2024. PMID: 38665034 Free PMC article. Review. - ELF4 contributes to esophageal squamous cell carcinoma growth and metastasis by augmenting cancer stemness via FUT9.
Xu A, Sun M, Li Z, Chu Y, Fang K, Zhang Y, Lian J, Zhang L, Chen T, Xu M. Xu A, et al. Acta Biochim Biophys Sin (Shanghai). 2024 Jan 25;56(1):129-139. doi: 10.3724/abbs.2023225. Acta Biochim Biophys Sin (Shanghai). 2024. PMID: 37674363 Free PMC article. - HCV and tumor-initiating stem-like cells.
Machida K. Machida K. Front Physiol. 2022 Sep 15;13:903302. doi: 10.3389/fphys.2022.903302. eCollection 2022. Front Physiol. 2022. PMID: 36187761 Free PMC article. Review. - Identification of Prognostic Factors in Cholangiocarcinoma Based on Integrated ceRNA Network Analysis.
Jin H, Liu W, Xu W, Zhou L, Luo H, Xu C, Chen X, Chen W. Jin H, et al. Comput Math Methods Med. 2022 Sep 15;2022:7102736. doi: 10.1155/2022/7102736. eCollection 2022. Comput Math Methods Med. 2022. PMID: 36158120 Free PMC article.
References
- Nature. 2010 May 27;465(7297):473-7 - PubMed
- Nature. 2009 Sep 10;461(7261):272-6 - PubMed
- Nat Protoc. 2009;4(1):44-57 - PubMed
- Blood. 2008 May 1;111(9):4809-12 - PubMed
- Nature. 2010 Jan 14;463(7278):191-6 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical