Genome-based prediction of testcross values in maize - PubMed (original) (raw)
. 2011 Jul;123(2):339-50.
doi: 10.1007/s00122-011-1587-7. Epub 2011 Apr 20.
Affiliations
- PMID: 21505832
- DOI: 10.1007/s00122-011-1587-7
Genome-based prediction of testcross values in maize
Theresa Albrecht et al. Theor Appl Genet. 2011 Jul.
Abstract
This is the first large-scale experimental study on genome-based prediction of testcross values in an advanced cycle breeding population of maize. The study comprised testcross progenies of 1,380 doubled haploid lines of maize derived from 36 crosses and phenotyped for grain yield and grain dry matter content in seven locations. The lines were genotyped with 1,152 single nucleotide polymorphism markers. Pedigree data were available for three generations. We used best linear unbiased prediction and stratified cross-validation to evaluate the performance of prediction models differing in the modeling of relatedness between inbred lines and in the calculation of genome-based coefficients of similarity. The choice of similarity coefficient did not affect prediction accuracies. Models including genomic information yielded significantly higher prediction accuracies than the model based on pedigree information alone. Average prediction accuracies based on genomic data were high even for a complex trait like grain yield (0.72-0.74) when the cross-validation scheme allowed for a high degree of relatedness between the estimation and the test set. When predictions were performed across distantly related families, prediction accuracies decreased significantly (0.47-0.48). Prediction accuracies decreased with decreasing sample size but were still high when the population size was halved (0.67-0.69). The results from this study are encouraging with respect to genome-based prediction of the genetic value of untested lines in advanced cycle breeding populations and the implementation of genomic selection in the breeding process.
Similar articles
- Genomic prediction across years in a maize doubled haploid breeding program to accelerate early-stage testcross testing.
Wang N, Wang H, Zhang A, Liu Y, Yu D, Hao Z, Ilut D, Glaubitz JC, Gao Y, Jones E, Olsen M, Li X, San Vicente F, Prasanna BM, Crossa J, Pérez-Rodríguez P, Zhang X. Wang N, et al. Theor Appl Genet. 2020 Oct;133(10):2869-2879. doi: 10.1007/s00122-020-03638-5. Epub 2020 Jun 30. Theor Appl Genet. 2020. PMID: 32607592 Free PMC article. - Usefulness of multiparental populations of maize (Zea mays L.) for genome-based prediction.
Lehermeier C, Krämer N, Bauer E, Bauland C, Camisan C, Campo L, Flament P, Melchinger AE, Menz M, Meyer N, Moreau L, Moreno-González J, Ouzunova M, Pausch H, Ranc N, Schipprack W, Schönleben M, Walter H, Charcosset A, Schön CC. Lehermeier C, et al. Genetics. 2014 Sep;198(1):3-16. doi: 10.1534/genetics.114.161943. Genetics. 2014. PMID: 25236445 Free PMC article. - Calibration and validation of predicted genomic breeding values in an advanced cycle maize population.
Auinger HJ, Lehermeier C, Gianola D, Mayer M, Melchinger AE, da Silva S, Knaak C, Ouzunova M, Schön CC. Auinger HJ, et al. Theor Appl Genet. 2021 Sep;134(9):3069-3081. doi: 10.1007/s00122-021-03880-5. Epub 2021 Jun 12. Theor Appl Genet. 2021. PMID: 34117908 Free PMC article. - Maize In Planta Haploid Inducer Lines: A Cornerstone for Doubled Haploid Technology.
Jacquier NMA, Gilles LM, Martinant JP, Rogowsky PM, Widiez T. Jacquier NMA, et al. Methods Mol Biol. 2021;2288:25-48. doi: 10.1007/978-1-0716-1335-1_2. Methods Mol Biol. 2021. PMID: 34270003 Review. - Genome optimization for improvement of maize breeding.
Jiang S, Cheng Q, Yan J, Fu R, Wang X. Jiang S, et al. Theor Appl Genet. 2020 May;133(5):1491-1502. doi: 10.1007/s00122-019-03493-z. Epub 2019 Dec 6. Theor Appl Genet. 2020. PMID: 31811314 Review.
Cited by
- QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize.
Inghelandt DV, Frey FP, Ries D, Stich B. Inghelandt DV, et al. Sci Rep. 2019 Oct 8;9(1):14418. doi: 10.1038/s41598-019-50853-2. Sci Rep. 2019. PMID: 31594984 Free PMC article. - Utilization Strategies of Two Environment Phenotypes in Genomic Prediction.
Lin Q, Teng J, Cai X, Li J, Zhang Z. Lin Q, et al. Genes (Basel). 2022 Apr 20;13(5):722. doi: 10.3390/genes13050722. Genes (Basel). 2022. PMID: 35627107 Free PMC article. - Phenomic selection in wheat breeding: identification and optimisation of factors influencing prediction accuracy and comparison to genomic selection.
Robert P, Auzanneau J, Goudemand E, Oury FX, Rolland B, Heumez E, Bouchet S, Le Gouis J, Rincent R. Robert P, et al. Theor Appl Genet. 2022 Mar;135(3):895-914. doi: 10.1007/s00122-021-04005-8. Epub 2022 Jan 6. Theor Appl Genet. 2022. PMID: 34988629 - Genomic Prediction with Genotype by Environment Interaction Analysis for Kernel Zinc Concentration in Tropical Maize Germplasm.
Mageto EK, Crossa J, Pérez-Rodríguez P, Dhliwayo T, Palacios-Rojas N, Lee M, Guo R, San Vicente F, Zhang X, Hindu V. Mageto EK, et al. G3 (Bethesda). 2020 Aug 5;10(8):2629-2639. doi: 10.1534/g3.120.401172. G3 (Bethesda). 2020. PMID: 32482728 Free PMC article. - Genomic selection accuracies within and between environments and small breeding groups in white spruce.
Beaulieu J, Doerksen TK, MacKay J, Rainville A, Bousquet J. Beaulieu J, et al. BMC Genomics. 2014 Dec 2;15(1):1048. doi: 10.1186/1471-2164-15-1048. BMC Genomics. 2014. PMID: 25442968 Free PMC article.
References
- Genetics. 1998 May;149(1):383-403 - PubMed
- Biom J. 2008 Apr;50(2):164-89 - PubMed
- Science. 2009 Nov 20;326(5956):1112-5 - PubMed
- Theor Appl Genet. 2009 Dec;120(1):151-61 - PubMed
- Genetics. 1966 Dec;54(6):1279-86 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources