The cryptochromes: blue light photoreceptors in plants and animals - PubMed (original) (raw)
Review
The cryptochromes: blue light photoreceptors in plants and animals
Inês Chaves et al. Annu Rev Plant Biol. 2011.
Abstract
Cryptochromes are flavoprotein photoreceptors first identified in Arabidopsis thaliana, where they play key roles in growth and development. Subsequently identified in prokaryotes, archaea, and many eukaryotes, cryptochromes function in the animal circadian clock and are proposed as magnetoreceptors in migratory birds. Cryptochromes are closely structurally related to photolyases, evolutionarily ancient flavoproteins that catalyze light-dependent DNA repair. Here, we review the structural, photochemical, and molecular properties of cry-DASH, plant, and animal cryptochromes in relation to biological signaling mechanisms and uncover common features that may contribute to better understanding the function of cryptochromes in diverse systems including in man.
Similar articles
- Evolutionary History of the Photolyase/Cryptochrome Superfamily in Eukaryotes.
Mei Q, Dvornyk V. Mei Q, et al. PLoS One. 2015 Sep 9;10(9):e0135940. doi: 10.1371/journal.pone.0135940. eCollection 2015. PLoS One. 2015. PMID: 26352435 Free PMC article. - Evolution of Proteins of the DNA Photolyase/Cryptochrome Family.
Vechtomova YL, Telegina TA, Kritsky MS. Vechtomova YL, et al. Biochemistry (Mosc). 2020 Jan;85(Suppl 1):S131-S153. doi: 10.1134/S0006297920140072. Biochemistry (Mosc). 2020. PMID: 32087057 Review. - Structure function analysis of mammalian cryptochromes.
Tamanini F, Chaves I, Bajek MI, van der Horst GT. Tamanini F, et al. Cold Spring Harb Symp Quant Biol. 2007;72:133-9. doi: 10.1101/sqb.2007.72.066. Cold Spring Harb Symp Quant Biol. 2007. PMID: 18419270 Review. - Photolyases and cryptochromes: common mechanisms of DNA repair and light-driven signaling?
Essen LO. Essen LO. Curr Opin Struct Biol. 2006 Feb;16(1):51-9. doi: 10.1016/j.sbi.2006.01.004. Epub 2006 Jan 19. Curr Opin Struct Biol. 2006. PMID: 16427270 Review. - Structural biology of DNA photolyases and cryptochromes.
Müller M, Carell T. Müller M, et al. Curr Opin Struct Biol. 2009 Jun;19(3):277-85. doi: 10.1016/j.sbi.2009.05.003. Epub 2009 May 30. Curr Opin Struct Biol. 2009. PMID: 19487120 Review.
Cited by
- Genome-wide identification of CAMTA genes and their expression dependence on light and calcium signaling during seedling growth and development in mung bean.
Wicaksono A, Buaboocha T. Wicaksono A, et al. BMC Genomics. 2024 Oct 23;25(1):992. doi: 10.1186/s12864-024-10893-z. BMC Genomics. 2024. PMID: 39443876 Free PMC article. - Tuning flavin environment to detect and control light-induced conformational switching in Drosophila cryptochrome.
Chandrasekaran S, Schneps CM, Dunleavy R, Lin C, DeOliveira CC, Ganguly A, Crane BR. Chandrasekaran S, et al. Commun Biol. 2021 Feb 26;4(1):249. doi: 10.1038/s42003-021-01766-2. Commun Biol. 2021. PMID: 33637846 Free PMC article. - Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1.
Gao J, Wang X, Zhang M, Bian M, Deng W, Zuo Z, Yang Z, Zhong D, Lin C. Gao J, et al. Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):9135-40. doi: 10.1073/pnas.1504404112. Epub 2015 Jun 23. Proc Natl Acad Sci U S A. 2015. PMID: 26106155 Free PMC article. - Cryptochrome-mediated light responses in plants.
Wang X, Wang Q, Nguyen P, Lin C. Wang X, et al. Enzymes. 2014;35:167-89. doi: 10.1016/B978-0-12-801922-1.00007-5. Enzymes. 2014. PMID: 25740719 Free PMC article. - Decrypting cryptochrome: revealing the molecular identity of the photoactivation reaction.
Solov'yov IA, Domratcheva T, Moughal Shahi AR, Schulten K. Solov'yov IA, et al. J Am Chem Soc. 2012 Oct 31;134(43):18046-52. doi: 10.1021/ja3074819. Epub 2012 Oct 19. J Am Chem Soc. 2012. PMID: 23009093 Free PMC article.