Curvature-dependent elastic properties of liquid-ordered domains result in inverted domain sorting on uniaxially compressed vesicles - PubMed (original) (raw)
. 2011 Apr 8;106(14):148102.
doi: 10.1103/PhysRevLett.106.148102. Epub 2011 Apr 5.
Affiliations
- PMID: 21561224
- DOI: 10.1103/PhysRevLett.106.148102
Free article
Curvature-dependent elastic properties of liquid-ordered domains result in inverted domain sorting on uniaxially compressed vesicles
H Jelger Risselada et al. Phys Rev Lett. 2011.
Free article
Erratum in
- Phys Rev Lett. 2011 Apr 22;106(16):169905
Abstract
Using a coarse-grained molecular model we study the spatial distribution of lipid domains on a 20-nm-sized vesicle. The lipid mixture laterally phase separates into a raftlike, liquid-ordered (l(o)) phase and a liquid-disordered phase. As we uniaxially compress the mixed vesicle keeping the enclosed volume constant, we impart tension onto the membrane. The vesicle adopts a barrel shape, which is composed of two flat contact zones and a curved edge. The l(o) domain, which exhibits a higher bending rigidity, segregates to the highly curved edge. This inverted domain sorting switches to normal domain sorting, where the l(o) domain prefers the flat contact zone, when we release the contents of the vesicle. We rationalize this domain sorting by a pronounced reduction of the bending rigidity and area compressibility of the l(o) phase upon bending.
Similar articles
- Mechanical stability of micropipet-aspirated giant vesicles with fluid phase coexistence.
Das S, Tian A, Baumgart T. Das S, et al. J Phys Chem B. 2008 Sep 18;112(37):11625-30. doi: 10.1021/jp800029u. Epub 2008 Aug 22. J Phys Chem B. 2008. PMID: 18717549 - Influence of the bending rigidity and the line tension on the mechanical stability of micropipette aspirated vesicles.
Das S. Das S. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 1):021908. doi: 10.1103/PhysRevE.82.021908. Epub 2010 Aug 9. Phys Rev E Stat Nonlin Soft Matter Phys. 2010. PMID: 20866838 - Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties.
Funkhouser CM, Solis FJ, Thornton K. Funkhouser CM, et al. J Chem Phys. 2014 Apr 14;140(14):144908. doi: 10.1063/1.4870478. J Chem Phys. 2014. PMID: 24735319 - Coupling of bending and stretching deformations in vesicle membranes.
Lipowsky R. Lipowsky R. Adv Colloid Interface Sci. 2014 Jun;208:14-24. doi: 10.1016/j.cis.2014.02.008. Epub 2014 Feb 18. Adv Colloid Interface Sci. 2014. PMID: 24630342 Review. - Shape analysis of giant vesicles with fluid phase coexistence by laser scanning microscopy to determine curvature, bending elasticity, and line tension.
Hess ST, Gudheti MV, Mlodzianoski M, Baumgart T. Hess ST, et al. Methods Mol Biol. 2007;400:367-87. doi: 10.1007/978-1-59745-519-0_25. Methods Mol Biol. 2007. PMID: 17951747 Review.
Cited by
- Computational and Experimental Approaches to Investigate Lipid Nanoparticles as Drug and Gene Delivery Systems.
Chan C, Du S, Dong Y, Cheng X. Chan C, et al. Curr Top Med Chem. 2021;21(2):92-114. doi: 10.2174/1568026620666201126162945. Curr Top Med Chem. 2021. PMID: 33243123 Free PMC article. Review. - Mode specific elastic constants for the gel, liquid-ordered, and liquid-disordered phases of DPPC/DOPC/cholesterol model lipid bilayers.
Uline MJ, Szleifer I. Uline MJ, et al. Faraday Discuss. 2013;161:177-91; discussion 273-303. doi: 10.1039/c2fd20091k. Faraday Discuss. 2013. PMID: 23805743 Free PMC article. - Phase behavior of lipid bilayers under tension.
Uline MJ, Schick M, Szleifer I. Uline MJ, et al. Biophys J. 2012 Feb 8;102(3):517-22. doi: 10.1016/j.bpj.2011.12.050. Epub 2012 Feb 7. Biophys J. 2012. PMID: 22325274 Free PMC article. - The mechanism of collapse of heterogeneous lipid monolayers.
Baoukina S, Rozmanov D, Mendez-Villuendas E, Tieleman DP. Baoukina S, et al. Biophys J. 2014 Sep 2;107(5):1136-1145. doi: 10.1016/j.bpj.2014.05.053. Biophys J. 2014. PMID: 25185549 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials