Global quantification of mammalian gene expression control - PubMed (original) (raw)
. 2011 May 19;473(7347):337-42.
doi: 10.1038/nature10098.
Affiliations
- PMID: 21593866
- DOI: 10.1038/nature10098
Global quantification of mammalian gene expression control
Björn Schwanhäusser et al. Nature. 2011.
Erratum in
- Corrigendum: Global quantification of mammalian gene expression control.
Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M. Schwanhäusser B, et al. Nature. 2013 Mar 7;495(7439):126-7. doi: 10.1038/nature11848. Epub 2013 Feb 13. Nature. 2013. PMID: 23407496 No abstract available.
Abstract
Gene expression is a multistep process that involves the transcription, translation and turnover of messenger RNAs and proteins. Although it is one of the most fundamental processes of life, the entire cascade has never been quantified on a genome-wide scale. Here we simultaneously measured absolute mRNA and protein abundance and turnover by parallel metabolic pulse labelling for more than 5,000 genes in mammalian cells. Whereas mRNA and protein levels correlated better than previously thought, corresponding half-lives showed no correlation. Using a quantitative model we have obtained the first genome-scale prediction of synthesis rates of mRNAs and proteins. We find that the cellular abundance of proteins is predominantly controlled at the level of translation. Genes with similar combinations of mRNA and protein stability shared functional properties, indicating that half-lives evolved under energetic and dynamic constraints. Quantitative information about all stages of gene expression provides a rich resource and helps to provide a greater understanding of the underlying design principles.
Comment in
- Translation's coming of age.
Vogel C. Vogel C. Mol Syst Biol. 2011 May 24;7:498. doi: 10.1038/msb.2011.33. Mol Syst Biol. 2011. PMID: 21613985 Free PMC article. No abstract available. - Gene expression: Transcriptome to proteome and back to genome.
Muers M. Muers M. Nat Rev Genet. 2011 Jun 28;12(8):518. doi: 10.1038/nrg3037. Nat Rev Genet. 2011. PMID: 21709688 No abstract available. - The dynamic RNA world.
de Souza N. de Souza N. Nat Methods. 2011 Jul;8(7):536. doi: 10.1038/nmeth0711-536. Nat Methods. 2011. PMID: 21850735 No abstract available.
Similar articles
- mRNAs, proteins and the emerging principles of gene expression control.
Buccitelli C, Selbach M. Buccitelli C, et al. Nat Rev Genet. 2020 Oct;21(10):630-644. doi: 10.1038/s41576-020-0258-4. Epub 2020 Jul 24. Nat Rev Genet. 2020. PMID: 32709985 Review. - Non-invasive measurement of mRNA decay reveals translation initiation as the major determinant of mRNA stability.
Chan LY, Mugler CF, Heinrich S, Vallotton P, Weis K. Chan LY, et al. Elife. 2018 Sep 7;7:e32536. doi: 10.7554/eLife.32536. Elife. 2018. PMID: 30192227 Free PMC article. - Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals.
Tani H, Mizutani R, Salam KA, Tano K, Ijiri K, Wakamatsu A, Isogai T, Suzuki Y, Akimitsu N. Tani H, et al. Genome Res. 2012 May;22(5):947-56. doi: 10.1101/gr.130559.111. Epub 2012 Feb 27. Genome Res. 2012. PMID: 22369889 Free PMC article. - Integrative analysis of the Trypanosoma brucei gene expression cascade predicts differential regulation of mRNA processing and unusual control of ribosomal protein expression.
Antwi EB, Haanstra JR, Ramasamy G, Jensen B, Droll D, Rojas F, Minia I, Terrao M, Mercé C, Matthews K, Myler PJ, Parsons M, Clayton C. Antwi EB, et al. BMC Genomics. 2016 Apr 26;17:306. doi: 10.1186/s12864-016-2624-3. BMC Genomics. 2016. PMID: 27118143 Free PMC article. - mRNA stability in mammalian cells.
Ross J. Ross J. Microbiol Rev. 1995 Sep;59(3):423-50. doi: 10.1128/mr.59.3.423-450.1995. Microbiol Rev. 1995. PMID: 7565413 Free PMC article. Review.
Cited by
- NEK9 regulates primary cilia formation by acting as a selective autophagy adaptor for MYH9/myosin IIA.
Yamamoto Y, Chino H, Tsukamoto S, Ode KL, Ueda HR, Mizushima N. Yamamoto Y, et al. Nat Commun. 2021 Jun 2;12(1):3292. doi: 10.1038/s41467-021-23599-7. Nat Commun. 2021. PMID: 34078910 Free PMC article. - Temporal multiomic modeling reveals a B-cell receptor proliferative program in chronic lymphocytic leukemia.
Schleiss C, Carapito R, Fornecker LM, Muller L, Paul N, Tahar O, Pichot A, Tavian M, Nicolae A, Miguet L, Mauvieux L, Herbrecht R, Cianferani S, Freund JN, Carapito C, Maumy-Bertrand M, Bahram S, Bertrand F, Vallat L. Schleiss C, et al. Leukemia. 2021 May;35(5):1463-1474. doi: 10.1038/s41375-021-01221-5. Epub 2021 Apr 8. Leukemia. 2021. PMID: 33833385 Free PMC article. - Enhanced stability and polyadenylation of select mRNAs support rapid thermogenesis in the brown fat of a hibernator.
Grabek KR, Diniz Behn C, Barsh GS, Hesselberth JR, Martin SL. Grabek KR, et al. Elife. 2015 Jan 27;4:e04517. doi: 10.7554/eLife.04517. Elife. 2015. PMID: 25626169 Free PMC article. - The Magellania venosa Biomineralizing Proteome: A Window into Brachiopod Shell Evolution.
Jackson DJ, Mann K, Häussermann V, Schilhabel MB, Lüter C, Griesshaber E, Schmahl W, Wörheide G. Jackson DJ, et al. Genome Biol Evol. 2015 Apr 24;7(5):1349-62. doi: 10.1093/gbe/evv074. Genome Biol Evol. 2015. PMID: 25912046 Free PMC article. - Multi-omics profile of the mouse dentate gyrus after kainic acid-induced status epilepticus.
Schouten M, Bielefeld P, Fratantoni SA, Hubens CJ, Piersma SR, Pham TV, Voskuyl RA, Lucassen PJ, Jimenez CR, Fitzsimons CP. Schouten M, et al. Sci Data. 2016 Aug 16;3:160068. doi: 10.1038/sdata.2016.68. Sci Data. 2016. PMID: 27529540 Free PMC article.
References
- Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13004-9 - PubMed
- Anal Chem. 2004 Sep 1;76(17):4951-9 - PubMed
- J Proteome Res. 2009 Jan;8(1):104-12 - PubMed
- Science. 2008 Jan 18;319(5861):339-43 - PubMed
- Proteomics. 2009 Jan;9(1):205-9 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources