Global quantification of mammalian gene expression control - PubMed (original) (raw)
. 2011 May 19;473(7347):337-42.
doi: 10.1038/nature10098.
Affiliations
- PMID: 21593866
- DOI: 10.1038/nature10098
Global quantification of mammalian gene expression control
Björn Schwanhäusser et al. Nature. 2011.
Erratum in
- Corrigendum: Global quantification of mammalian gene expression control.
Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M. Schwanhäusser B, et al. Nature. 2013 Mar 7;495(7439):126-7. doi: 10.1038/nature11848. Epub 2013 Feb 13. Nature. 2013. PMID: 23407496 No abstract available.
Abstract
Gene expression is a multistep process that involves the transcription, translation and turnover of messenger RNAs and proteins. Although it is one of the most fundamental processes of life, the entire cascade has never been quantified on a genome-wide scale. Here we simultaneously measured absolute mRNA and protein abundance and turnover by parallel metabolic pulse labelling for more than 5,000 genes in mammalian cells. Whereas mRNA and protein levels correlated better than previously thought, corresponding half-lives showed no correlation. Using a quantitative model we have obtained the first genome-scale prediction of synthesis rates of mRNAs and proteins. We find that the cellular abundance of proteins is predominantly controlled at the level of translation. Genes with similar combinations of mRNA and protein stability shared functional properties, indicating that half-lives evolved under energetic and dynamic constraints. Quantitative information about all stages of gene expression provides a rich resource and helps to provide a greater understanding of the underlying design principles.
Comment in
- Translation's coming of age.
Vogel C. Vogel C. Mol Syst Biol. 2011 May 24;7:498. doi: 10.1038/msb.2011.33. Mol Syst Biol. 2011. PMID: 21613985 Free PMC article. No abstract available. - Gene expression: Transcriptome to proteome and back to genome.
Muers M. Muers M. Nat Rev Genet. 2011 Jun 28;12(8):518. doi: 10.1038/nrg3037. Nat Rev Genet. 2011. PMID: 21709688 No abstract available. - The dynamic RNA world.
de Souza N. de Souza N. Nat Methods. 2011 Jul;8(7):536. doi: 10.1038/nmeth0711-536. Nat Methods. 2011. PMID: 21850735 No abstract available.
Similar articles
- mRNAs, proteins and the emerging principles of gene expression control.
Buccitelli C, Selbach M. Buccitelli C, et al. Nat Rev Genet. 2020 Oct;21(10):630-644. doi: 10.1038/s41576-020-0258-4. Epub 2020 Jul 24. Nat Rev Genet. 2020. PMID: 32709985 Review. - Non-invasive measurement of mRNA decay reveals translation initiation as the major determinant of mRNA stability.
Chan LY, Mugler CF, Heinrich S, Vallotton P, Weis K. Chan LY, et al. Elife. 2018 Sep 7;7:e32536. doi: 10.7554/eLife.32536. Elife. 2018. PMID: 30192227 Free PMC article. - Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals.
Tani H, Mizutani R, Salam KA, Tano K, Ijiri K, Wakamatsu A, Isogai T, Suzuki Y, Akimitsu N. Tani H, et al. Genome Res. 2012 May;22(5):947-56. doi: 10.1101/gr.130559.111. Epub 2012 Feb 27. Genome Res. 2012. PMID: 22369889 Free PMC article. - Integrative analysis of the Trypanosoma brucei gene expression cascade predicts differential regulation of mRNA processing and unusual control of ribosomal protein expression.
Antwi EB, Haanstra JR, Ramasamy G, Jensen B, Droll D, Rojas F, Minia I, Terrao M, Mercé C, Matthews K, Myler PJ, Parsons M, Clayton C. Antwi EB, et al. BMC Genomics. 2016 Apr 26;17:306. doi: 10.1186/s12864-016-2624-3. BMC Genomics. 2016. PMID: 27118143 Free PMC article. - mRNA stability in mammalian cells.
Ross J. Ross J. Microbiol Rev. 1995 Sep;59(3):423-50. doi: 10.1128/mr.59.3.423-450.1995. Microbiol Rev. 1995. PMID: 7565413 Free PMC article. Review.
Cited by
- Quantitative dissection and stoichiometry determination of the human SET1/MLL histone methyltransferase complexes.
van Nuland R, Smits AH, Pallaki P, Jansen PW, Vermeulen M, Timmers HT. van Nuland R, et al. Mol Cell Biol. 2013 May;33(10):2067-77. doi: 10.1128/MCB.01742-12. Epub 2013 Mar 18. Mol Cell Biol. 2013. PMID: 23508102 Free PMC article. - Modeling Wnt/β-Catenin Target Gene Expression in APC and Wnt Gradients Under Wild Type and Mutant Conditions.
Benary U, Kofahl B, Hecht A, Wolf J. Benary U, et al. Front Physiol. 2013 Feb 25;4:21. doi: 10.3389/fphys.2013.00021. eCollection 2013. Front Physiol. 2013. PMID: 23508686 Free PMC article. - Comparative study of human and mouse postsynaptic proteomes finds high compositional conservation and abundance differences for key synaptic proteins.
Bayés A, Collins MO, Croning MD, van de Lagemaat LN, Choudhary JS, Grant SG. Bayés A, et al. PLoS One. 2012;7(10):e46683. doi: 10.1371/journal.pone.0046683. Epub 2012 Oct 5. PLoS One. 2012. PMID: 23071613 Free PMC article. - Utilizing population variation, vaccination, and systems biology to study human immunology.
Tsang JS. Tsang JS. Trends Immunol. 2015 Aug;36(8):479-93. doi: 10.1016/j.it.2015.06.005. Epub 2015 Jul 14. Trends Immunol. 2015. PMID: 26187853 Free PMC article. Review. - Computational and analytical challenges in single-cell transcriptomics.
Stegle O, Teichmann SA, Marioni JC. Stegle O, et al. Nat Rev Genet. 2015 Mar;16(3):133-45. doi: 10.1038/nrg3833. Epub 2015 Jan 28. Nat Rev Genet. 2015. PMID: 25628217 Review.
References
- Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13004-9 - PubMed
- Anal Chem. 2004 Sep 1;76(17):4951-9 - PubMed
- J Proteome Res. 2009 Jan;8(1):104-12 - PubMed
- Science. 2008 Jan 18;319(5861):339-43 - PubMed
- Proteomics. 2009 Jan;9(1):205-9 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources