Identification of the in vitro target of an iron-responsive AraC-like protein from Neisseria meningitidis that is in a regulatory cascade with Fur - PubMed (original) (raw)
. 2011 Aug;157(Pt 8):2235-2247.
doi: 10.1099/mic.0.048033-0. Epub 2011 May 20.
Affiliations
- PMID: 21602219
- DOI: 10.1099/mic.0.048033-0
Free article
Identification of the in vitro target of an iron-responsive AraC-like protein from Neisseria meningitidis that is in a regulatory cascade with Fur
Laura Fantappiè et al. Microbiology (Reading). 2011 Aug.
Free article
Abstract
In this study we characterized a genetic locus that is predicted to encode one of the three AraC-like regulators of Neisseria meningitidis, a homologue of MpeR of Neisseria gonorrhoeae which is specific to the pathogenic Neisseria species. Previous microarray studies have suggested that this gene is a member of the Fur regulon. In strain MC58, it is a pseudogene (annotated as two ORFs, NMB1879 and NMB1878) containing a frameshift mutation which we show is common to all strains tested belonging to the ST-32 hypervirulent clonal complex. Using primer extension and S1 nuclease protection assays, we mapped two promoters in the upstream intergenic region: the mpeR promoter and the NMB1880 promoter. The latter promoter drives transcription of the divergent upstream locus, which is predicted to encode a high-affinity iron uptake system. We demonstrated that both promoters are induced during iron limitation and that this regulation is also mediated by the Fur regulator. DNA-binding studies with the purified MpeR protein revealed that it binds to a region directly upstream of the NMB1880 divergent promoter, suggesting a role in its regulation. Mutants of N. meningitidis strains lacking MpeR or overexpressing MpeR showed no significant differences in expression of the P(NMB1880) promoter, nor did global transcriptional profiling of an MpeR knockout identify any deregulated genes, suggesting that the MpeR protein is inactive under the conditions used in these experiments. The presence of MpeR in a regulatory cascade downstream of the Fur master iron regulator implicates it as being expressed in the iron-limiting environment of the host, where it may in turn regulate a group of genes, including the divergent iron transport locus, in response to signals important for infection.
Similar articles
- Identification of iron-activated and -repressed Fur-dependent genes by transcriptome analysis of Neisseria meningitidis group B.
Grifantini R, Sebastian S, Frigimelica E, Draghi M, Bartolini E, Muzzi A, Rappuoli R, Grandi G, Genco CA. Grifantini R, et al. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9542-7. doi: 10.1073/pnas.1033001100. Epub 2003 Jul 25. Proc Natl Acad Sci U S A. 2003. PMID: 12883001 Free PMC article. - Characterization of the Neisseria gonorrhoeae Iron and Fur Regulatory Network.
Yu C, McClure R, Nudel K, Daou N, Genco CA. Yu C, et al. J Bacteriol. 2016 Jul 28;198(16):2180-91. doi: 10.1128/JB.00166-16. Print 2016 Aug 15. J Bacteriol. 2016. PMID: 27246574 Free PMC article. - A novel fur- and iron-regulated small RNA, NrrF, is required for indirect fur-mediated regulation of the sdhA and sdhC genes in Neisseria meningitidis.
Mellin JR, Goswami S, Grogan S, Tjaden B, Genco CA. Mellin JR, et al. J Bacteriol. 2007 May;189(10):3686-94. doi: 10.1128/JB.01890-06. Epub 2007 Mar 9. J Bacteriol. 2007. PMID: 17351036 Free PMC article. - Iron transport systems in Neisseria meningitidis.
Perkins-Balding D, Ratliff-Griffin M, Stojiljkovic I. Perkins-Balding D, et al. Microbiol Mol Biol Rev. 2004 Mar;68(1):154-71. doi: 10.1128/MMBR.68.1.154-171.2004. Microbiol Mol Biol Rev. 2004. PMID: 15007100 Free PMC article. Review. - Fur-mediated global regulatory circuits in pathogenic Neisseria species.
Yu C, Genco CA. Yu C, et al. J Bacteriol. 2012 Dec;194(23):6372-81. doi: 10.1128/JB.00262-12. Epub 2012 Aug 10. J Bacteriol. 2012. PMID: 22885296 Free PMC article. Review.
Cited by
- IurV, Encoded by ORF VCA0231, Is Involved in the Regulation of Iron Uptake Genes in Vibrio cholerae.
Sachman-Ruiz B, Ibarra JA, Estrada-de Los Santos P, Torres Muñoz A, Giménez B, Salazar JC, García-Angulo VA. Sachman-Ruiz B, et al. Genes (Basel). 2020 Oct 12;11(10):1184. doi: 10.3390/genes11101184. Genes (Basel). 2020. PMID: 33053678 Free PMC article. - Within-host evolution of bacterial pathogens.
Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ. Didelot X, et al. Nat Rev Microbiol. 2016 Mar;14(3):150-62. doi: 10.1038/nrmicro.2015.13. Epub 2016 Jan 19. Nat Rev Microbiol. 2016. PMID: 26806595 Free PMC article. Review. - Strategies of Intracellular Pathogens for Obtaining Iron from the Environment.
Leon-Sicairos N, Reyes-Cortes R, Guadrón-Llanos AM, Madueña-Molina J, Leon-Sicairos C, Canizalez-Román A. Leon-Sicairos N, et al. Biomed Res Int. 2015;2015:476534. doi: 10.1155/2015/476534. Epub 2015 May 18. Biomed Res Int. 2015. PMID: 26120582 Free PMC article. Review. - Iron homeostasis in the Rhodobacter genus.
Zappa S, Bauer CE. Zappa S, et al. Adv Bot Res. 2013;66:10.1016/B978-0-12-397923-0.00010-2. doi: 10.1016/B978-0-12-397923-0.00010-2. Adv Bot Res. 2013. PMID: 24382933 Free PMC article. - Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease.
Young BC, Golubchik T, Batty EM, Fung R, Larner-Svensson H, Votintseva AA, Miller RR, Godwin H, Knox K, Everitt RG, Iqbal Z, Rimmer AJ, Cule M, Ip CL, Didelot X, Harding RM, Donnelly P, Peto TE, Crook DW, Bowden R, Wilson DJ. Young BC, et al. Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4550-5. doi: 10.1073/pnas.1113219109. Epub 2012 Mar 5. Proc Natl Acad Sci U S A. 2012. PMID: 22393007 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical