Primate CpG islands are maintained by heterogeneous evolutionary regimes involving minimal selection - PubMed (original) (raw)
. 2011 May 27;145(5):773-86.
doi: 10.1016/j.cell.2011.04.024.
Affiliations
- PMID: 21620139
- DOI: 10.1016/j.cell.2011.04.024
Free article
Primate CpG islands are maintained by heterogeneous evolutionary regimes involving minimal selection
Netta Mendelson Cohen et al. Cell. 2011.
Free article
Abstract
Mammalian CpG islands are key epigenomic elements that were first characterized experimentally as genomic fractions with low levels of DNA methylation. Currently, CpG islands are defined based on their genomic sequences alone. Here, we develop evolutionary models to show that several distinct evolutionary processes generate and maintain CpG islands. One central evolutionary regime resulting in enriched CpG content is driven by low levels of DNA methylation and consequentially low rates of CpG deamination. Another major force forming CpG islands is biased gene conversion that stabilizes constitutively methylated CpG islands by balancing rapid deamination with CpG fixation. Importantly, evolutionary analysis and population genetics data suggest that selection for high CpG content is not a significant factor contributing to conservation of CpGs in differentially methylated regions. The heterogeneous, but not selective, origins of CpG islands have direct implications for the understanding of DNA methylation patterns in healthy and diseased cells.
Copyright © 2011 Elsevier Inc. All rights reserved.
Similar articles
- Methylation and deamination of CpGs generate p53-binding sites on a genomic scale.
Zemojtel T, Kielbasa SM, Arndt PF, Chung HR, Vingron M. Zemojtel T, et al. Trends Genet. 2009 Feb;25(2):63-6. doi: 10.1016/j.tig.2008.11.005. Epub 2008 Dec 26. Trends Genet. 2009. PMID: 19101055 - Tandem repeats in the CpG islands of imprinted genes.
Hutter B, Helms V, Paulsen M. Hutter B, et al. Genomics. 2006 Sep;88(3):323-32. doi: 10.1016/j.ygeno.2006.03.019. Epub 2006 May 11. Genomics. 2006. PMID: 16690248 - General transcription factor binding at CpG islands in normal cells correlates with resistance to de novo DNA methylation in cancer cells.
Gebhard C, Benner C, Ehrich M, Schwarzfischer L, Schilling E, Klug M, Dietmaier W, Thiede C, Holler E, Andreesen R, Rehli M. Gebhard C, et al. Cancer Res. 2010 Feb 15;70(4):1398-407. doi: 10.1158/0008-5472.CAN-09-3406. Epub 2010 Feb 9. Cancer Res. 2010. PMID: 20145141 - DNA methylation and chromatin structure: the puzzling CpG islands.
Caiafa P, Zampieri M. Caiafa P, et al. J Cell Biochem. 2005 Feb 1;94(2):257-65. doi: 10.1002/jcb.20325. J Cell Biochem. 2005. PMID: 15546139 Review. - From the margins of the genome: mobile elements shape primate evolution.
Hedges DJ, Batzer MA. Hedges DJ, et al. Bioessays. 2005 Aug;27(8):785-94. doi: 10.1002/bies.20268. Bioessays. 2005. PMID: 16015599 Review.
Cited by
- The role of DNA methylation in directing the functional organization of the cancer epigenome.
Lay FD, Liu Y, Kelly TK, Witt H, Farnham PJ, Jones PA, Berman BP. Lay FD, et al. Genome Res. 2015 Apr;25(4):467-77. doi: 10.1101/gr.183368.114. Epub 2015 Mar 6. Genome Res. 2015. PMID: 25747664 Free PMC article. - GC skew is a conserved property of unmethylated CpG island promoters across vertebrates.
Hartono SR, Korf IF, Chédin F. Hartono SR, et al. Nucleic Acids Res. 2015 Nov 16;43(20):9729-41. doi: 10.1093/nar/gkv811. Epub 2015 Aug 7. Nucleic Acids Res. 2015. PMID: 26253743 Free PMC article. - Charting a dynamic DNA methylation landscape of the human genome.
Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LT, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE, Gnirke A, Meissner A. Ziller MJ, et al. Nature. 2013 Aug 22;500(7463):477-81. doi: 10.1038/nature12433. Epub 2013 Aug 7. Nature. 2013. PMID: 23925113 Free PMC article. - Building a schizophrenia genetic network: transcription factor 4 regulates genes involved in neuronal development and schizophrenia risk.
Xia H, Jahr FM, Kim NK, Xie L, Shabalin AA, Bryois J, Sweet DH, Kronfol MM, Palasuberniam P, McRae M, Riley BP, Sullivan PF, van den Oord EJ, McClay JL. Xia H, et al. Hum Mol Genet. 2018 Sep 15;27(18):3246-3256. doi: 10.1093/hmg/ddy222. Hum Mol Genet. 2018. PMID: 29905862 Free PMC article. - High-throughput engineering of a mammalian genome reveals building principles of methylation states at CG rich regions.
Krebs AR, Dessus-Babus S, Burger L, Schübeler D. Krebs AR, et al. Elife. 2014 Sep 26;3:e04094. doi: 10.7554/eLife.04094. Elife. 2014. PMID: 25259795 Free PMC article.