Transcription factor networks in erythroid cell and megakaryocyte development - PubMed (original) (raw)
Review
Transcription factor networks in erythroid cell and megakaryocyte development
Louis C Doré et al. Blood. 2011.
Abstract
Erythroid cells and megakaryocytes are derived from a common precursor, the megakaryocyte-erythroid progenitor. Although these 2 closely related hematopoietic cell types share many transcription factors, there are several key differences in their regulatory networks that lead to differential gene expression downstream of the megakaryocyte-erythroid progenitor. With the advent of next-generation sequencing and our ability to precisely define transcription factor chromatin occupancy in vivo on a global scale, we are much closer to understanding how these 2 lineages are specified and in general how transcription factor complexes govern hematopoiesis.
Figures
Figure 1
Erythroid cells and megakaryocytes are derived from a common progenitor. The decision of whether the MEP should give rise to red cell or platelet lineages is controlled by an array of transcription factors and microRNAs.
Figure 2
A complex regulatory network controls MEP cell fate. The relative levels of expression of key regulatory factors, including GATA-1, GATA-2, SCL, and PU.1, are predicted to control the output toward erythroid cells (marked by EKLF) or megakaryocytes (marked by Fli-1). Arrows indicate gene activation; and blunted lines, repression.
Similar articles
- A common bipotent progenitor generates the erythroid and megakaryocyte lineages in embryonic stem cell-derived primitive hematopoiesis.
Klimchenko O, Mori M, Distefano A, Langlois T, Larbret F, Lecluse Y, Feraud O, Vainchenker W, Norol F, Debili N. Klimchenko O, et al. Blood. 2009 Aug 20;114(8):1506-17. doi: 10.1182/blood-2008-09-178863. Epub 2009 May 28. Blood. 2009. PMID: 19478046 - MEIS1 regulates early erythroid and megakaryocytic cell fate.
Zeddies S, Jansen SB, di Summa F, Geerts D, Zwaginga JJ, van der Schoot CE, von Lindern M, Thijssen-Timmer DC. Zeddies S, et al. Haematologica. 2014 Oct;99(10):1555-64. doi: 10.3324/haematol.2014.106567. Epub 2014 Aug 8. Haematologica. 2014. PMID: 25107888 Free PMC article. - Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways.
Psaila B, Barkas N, Iskander D, Roy A, Anderson S, Ashley N, Caputo VS, Lichtenberg J, Loaiza S, Bodine DM, Karadimitris A, Mead AJ, Roberts I. Psaila B, et al. Genome Biol. 2016 May 3;17:83. doi: 10.1186/s13059-016-0939-7. Genome Biol. 2016. PMID: 27142433 Free PMC article. - Current understanding of human megakaryocytic-erythroid progenitors and their fate determinants.
Kwon N, Thompson EN, Mayday MY, Scanlon V, Lu YC, Krause DS. Kwon N, et al. Curr Opin Hematol. 2021 Jan;28(1):28-35. doi: 10.1097/MOH.0000000000000625. Curr Opin Hematol. 2021. PMID: 33186151 Free PMC article. Review. - Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage.
Woolthuis CM, Park CY. Woolthuis CM, et al. Blood. 2016 Mar 10;127(10):1242-8. doi: 10.1182/blood-2015-07-607945. Epub 2016 Jan 19. Blood. 2016. PMID: 26787736 Free PMC article. Review.
Cited by
- Scalable identification of lineage-specific gene regulatory networks from metacells with NetID.
Wang W, Wang Y, Lyu R, Grün D. Wang W, et al. Genome Biol. 2024 Oct 18;25(1):275. doi: 10.1186/s13059-024-03418-0. Genome Biol. 2024. PMID: 39425176 Free PMC article. - HDAC7 is a potential therapeutic target in acute erythroid leukemia.
Zhang W, Yamamoto K, Chang YH, Yabushita T, Hao Y, Shimura R, Nakahara J, Shikata S, Iida K, Chen Q, Zhang X, Kitamura T, Goyama S. Zhang W, et al. Leukemia. 2024 Dec;38(12):2614-2627. doi: 10.1038/s41375-024-02394-5. Epub 2024 Sep 15. Leukemia. 2024. PMID: 39277669 Free PMC article. - Erythroid Krüppel-Like Factor (KLF1): A Surprisingly Versatile Regulator of Erythroid Differentiation.
Bieker JJ, Philipsen S. Bieker JJ, et al. Adv Exp Med Biol. 2024;1459:217-242. doi: 10.1007/978-3-031-62731-6_10. Adv Exp Med Biol. 2024. PMID: 39017846 Review. - The involvement of krüppel-like transcription factor 2 in megakaryocytic differentiation induction by phorbol 12-myrestrat 13-acetate.
Wang Z, Liu Z, Zhou P, Niu X, Sun Z, He H, Zhu Z. Wang Z, et al. Biomark Res. 2024 Jul 17;12(1):65. doi: 10.1186/s40364-024-00614-9. Biomark Res. 2024. PMID: 39014479 Free PMC article. - Interspecies regulatory landscapes and elements revealed by novel joint systematic integration of human and mouse blood cell epigenomes.
Xiang G, He X, Giardine BM, Isaac KJ, Taylor DJ, McCoy RC, Jansen C, Keller CA, Wixom AQ, Cockburn A, Miller A, Qi Q, He Y, Li Y, Lichtenberg J, Heuston EF, Anderson SM, Luan J, Vermunt MW, Yue F, Sauria MEG, Schatz MC, Taylor J, Göttgens B, Hughes JR, Higgs DR, Weiss MJ, Cheng Y, Blobel GA, Bodine DM, Zhang Y, Li Q, Mahony S, Hardison RC. Xiang G, et al. Genome Res. 2024 Aug 20;34(7):1089-1105. doi: 10.1101/gr.277950.123. Genome Res. 2024. PMID: 38951027 Free PMC article.
References
- Debili N, Coulombel L, Croisille L, et al. Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow. Blood. 1996;88(4):1284–1296. - PubMed
- Vannucchi AM, Paoletti F, Linari S, et al. Identification and characterization of a bipotent (erythroid and megakaryocytic) cell precursor from the spleen of phenylhydrazine-treated mice. Blood. 2000;95(8):2559–2568. - PubMed
- Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000;404(6774):193–197. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources