Adult neural function requires MeCP2 - PubMed (original) (raw)
Adult neural function requires MeCP2
Christopher M McGraw et al. Science. 2011.
Abstract
Rett syndrome (RTT) is a postnatal neurological disorder caused by mutations in MECP2, encoding the epigenetic regulator methyl-CpG-binding protein 2 (MeCP2). The onset of RTT symptoms during early life together with findings suggesting neurodevelopmental abnormalities in RTT and mouse models of RTT raised the question of whether maintaining MeCP2 function exclusively during early life might protect against disease. We show by using an inducible model of RTT that deletion of Mecp2 in adult mice recapitulates the germline knock-out phenotype, underscoring the ongoing role of MeCP2 in adult neurological function. Moreover, unlike the effects of other epigenetic instructions programmed during early life, the effects of early MeCP2 function are lost soon after its deletion. These findings suggest that therapies for RTT must be maintained throughout life.
Figures
Figure 1. Adult deletion of Mecp2 recapitulates germline knock-out
(A–B) MeCP2 is depleted in adult knock-out (AKO) mice by western blot of brain lysates (A, N= 3–4 mice per genotype), and by immunofluorescence in cerebellum (B). Scale bar = 50um. (C) AKO mice display symptoms of disease. N= 6–12 per genotype. (D) AKO mice develop motor and learning impairments similar to germline Mecp2null/y (KO) mice. N=10–26 per genotype. (E) Sst and Grin2a mRNA levels are altered in AKO mice. N = 4–12 per genotype. (F) AKO mice die prematurely (left) similar to KO mice (right). N=10–26 per genotype. Data presented as mean ± s.e.m. (*) p<0.05, (**) p<0.01, or (***) p<0.001.
Similar articles
- Exploring the possible link between MeCP2 and oxidative stress in Rett syndrome.
Filosa S, Pecorelli A, D'Esposito M, Valacchi G, Hajek J. Filosa S, et al. Free Radic Biol Med. 2015 Nov;88(Pt A):81-90. doi: 10.1016/j.freeradbiomed.2015.04.019. Epub 2015 May 8. Free Radic Biol Med. 2015. PMID: 25960047 Review. - Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome.
Moretti P, Levenson JM, Battaglia F, Atkinson R, Teague R, Antalffy B, Armstrong D, Arancio O, Sweatt JD, Zoghbi HY. Moretti P, et al. J Neurosci. 2006 Jan 4;26(1):319-27. doi: 10.1523/JNEUROSCI.2623-05.2006. J Neurosci. 2006. PMID: 16399702 Free PMC article. - Cell-specific expression of wild-type MeCP2 in mouse models of Rett syndrome yields insight about pathogenesis.
Alvarez-Saavedra M, Sáez MA, Kang D, Zoghbi HY, Young JI. Alvarez-Saavedra M, et al. Hum Mol Genet. 2007 Oct 1;16(19):2315-25. doi: 10.1093/hmg/ddm185. Epub 2007 Jul 17. Hum Mol Genet. 2007. PMID: 17635839 - Neuronal Plasticity-Dependent Paradigm and Young Plasma Treatment Prevent Synaptic and Motor Deficit in a Rett Syndrome Mouse Model.
Espinoza S, Navia C, Torres RF, Llontop N, Valladares V, Silva C, Vivero A, Novoa-Padilla E, Soto-Covasich J, Mella J, Kouro R, Valdivia S, Pérez-Bustamante M, Ojeda-Provoste P, Pineda N, Buvinic S, Lee-Liu D, Henríquez JP, Kerr B. Espinoza S, et al. Biomolecules. 2025 May 21;15(5):748. doi: 10.3390/biom15050748. Biomolecules. 2025. PMID: 40427641 Free PMC article. - The story of Rett syndrome: from clinic to neurobiology.
Chahrour M, Zoghbi HY. Chahrour M, et al. Neuron. 2007 Nov 8;56(3):422-37. doi: 10.1016/j.neuron.2007.10.001. Neuron. 2007. PMID: 17988628 Review.
Cited by
- Rett syndrome: a complex disorder with simple roots.
Lyst MJ, Bird A. Lyst MJ, et al. Nat Rev Genet. 2015 May;16(5):261-75. doi: 10.1038/nrg3897. Epub 2015 Mar 3. Nat Rev Genet. 2015. PMID: 25732612 Review. - Pain in Rett syndrome: a pilot study and a single case study on the assessment of pain and the construction of a suitable measuring scale.
Fabio RA, Chiarini L, Canegallo V. Fabio RA, et al. Orphanet J Rare Dis. 2022 Sep 14;17(1):356. doi: 10.1186/s13023-022-02519-y. Orphanet J Rare Dis. 2022. PMID: 36104823 Free PMC article. - Genotype-specific effects of Mecp2 loss-of-function on morphology of Layer V pyramidal neurons in heterozygous female Rett syndrome model mice.
Rietveld L, Stuss DP, McPhee D, Delaney KR. Rietveld L, et al. Front Cell Neurosci. 2015 Apr 20;9:145. doi: 10.3389/fncel.2015.00145. eCollection 2015. Front Cell Neurosci. 2015. PMID: 25941473 Free PMC article. - Developmental change of brain volume in Rett syndrome in Taiwan.
Jan TY, Wong LC, Hsu CJ, Huang CJ, Peng SS, Tseng WI, Lee WT. Jan TY, et al. J Neurodev Disord. 2024 Jul 3;16(1):36. doi: 10.1186/s11689-024-09549-6. J Neurodev Disord. 2024. PMID: 38961335 Free PMC article. - Interplay of LIS1 and MeCP2: Interactions and Implications With the Neurodevelopmental Disorders Lissencephaly and Rett Syndrome.
Keidar L, Gerlitz G, Kshirsagar A, Tsoory M, Olender T, Wang X, Yang Y, Chen YS, Yang YG, Voineagu I, Reiner O. Keidar L, et al. Front Cell Neurosci. 2019 Aug 14;13:370. doi: 10.3389/fncel.2019.00370. eCollection 2019. Front Cell Neurosci. 2019. PMID: 31474834 Free PMC article.
References
- Chahrour M, Zoghbi HY. Neuron. 2007;56:422–437. - PubMed
- Guy J, Hendrich B, Holmes M, Martin JE, Bird A. Nat Genet. 2001;27:322–326. - PubMed
- Hayashi S, McMahon AP. Developmental Biology. 2002;244:305–318. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- F31 NS073317/NS/NINDS NIH HHS/United States
- NS057819/NS/NINDS NIH HHS/United States
- HD024064/HD/NICHD NIH HHS/United States
- R01 NS057819/NS/NINDS NIH HHS/United States
- P30 HD024064/HD/NICHD NIH HHS/United States
- T32-NS043124/NS/NINDS NIH HHS/United States
- F31-NS073317/NS/NINDS NIH HHS/United States
- HHMI/Howard Hughes Medical Institute/United States
- T32 NS043124/NS/NINDS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases