Force probing cell shape changes to molecular resolution - PubMed (original) (raw)
Review
Force probing cell shape changes to molecular resolution
Martin P Stewart et al. Trends Biochem Sci. 2011 Aug.
Abstract
Atomic force microscopy (AFM) is a force sensing nanoscopic tool that can be used to undertake a multiscale approach to understand the mechanisms that underlie cell shape change, ranging from the cellular to molecular scale. In this review paper, we discuss the use of AFM to characterize the dramatic shape changes of mitotic cells. AFM-based mechanical assays can be applied to measure the considerable rounding force and hydrostatic pressure generated by mitotic cells. A complementary AFM technique, single-molecule force spectroscopy, is able to quantify the interactions and mechanisms that functionally regulate individual proteins. Future developments of these nanomechanical methods, together with advances in light microscopy imaging and cell biological and genetic tools, should provide further insight into the biochemical, cellular and mechanical processes that govern mitosis and other cell shape change phenomena.
Copyright © 2011 Elsevier Ltd. All rights reserved.
Similar articles
- High-resolution noncontact atomic force microscopy.
Pérez R, García R, Schwarz U. Pérez R, et al. Nanotechnology. 2009 Jul 1;20(26):260201. doi: 10.1088/0957-4484/20/26/260201. Epub 2009 Jun 10. Nanotechnology. 2009. PMID: 19531843 - AFM: a nanotool in membrane biology.
Muller DJ. Muller DJ. Biochemistry. 2008 Aug 5;47(31):7986-98. doi: 10.1021/bi800753x. Epub 2008 Jul 11. Biochemistry. 2008. PMID: 18616288 Review. - Single-molecule imaging of cell surfaces using near-field nanoscopy.
Hinterdorfer P, Garcia-Parajo MF, Dufrêne YF. Hinterdorfer P, et al. Acc Chem Res. 2012 Mar 20;45(3):327-36. doi: 10.1021/ar2001167. Epub 2011 Oct 12. Acc Chem Res. 2012. PMID: 21992025 Review. - Atomic force microscopy: a nanoscopic window on the cell surface.
Müller DJ, Dufrêne YF. Müller DJ, et al. Trends Cell Biol. 2011 Aug;21(8):461-9. doi: 10.1016/j.tcb.2011.04.008. Epub 2011 Jun 12. Trends Cell Biol. 2011. PMID: 21664134 Review. - Atomic force microscopy studies on the nanomechanical properties of Saccharomyces cerevisiae.
Arfsten J, Leupold S, Bradtmöller C, Kampen I, Kwade A. Arfsten J, et al. Colloids Surf B Biointerfaces. 2010 Aug 1;79(1):284-90. doi: 10.1016/j.colsurfb.2010.04.011. Epub 2010 Apr 21. Colloids Surf B Biointerfaces. 2010. PMID: 20452756
Cited by
- A synaptic F-actin network controls otoferlin-dependent exocytosis in auditory inner hair cells.
Vincent PF, Bouleau Y, Petit C, Dulon D. Vincent PF, et al. Elife. 2015 Nov 14;4:e10988. doi: 10.7554/eLife.10988. Elife. 2015. PMID: 26568308 Free PMC article. - Development of robust and standardized cantilever sensors based on biotin/NeutrAvidin coupling for antibody detection.
Zhang J, Lang HP, Battiston F, Backmann N, Huber F, Gerber C. Zhang J, et al. Sensors (Basel). 2013 Apr 19;13(4):5273-85. doi: 10.3390/s130405273. Sensors (Basel). 2013. PMID: 23604028 Free PMC article. - Tracking mechanics and volume of globular cells with atomic force microscopy using a constant-height clamp.
Stewart MP, Toyoda Y, Hyman AA, Müller DJ. Stewart MP, et al. Nat Protoc. 2012 Jan 5;7(1):143-54. doi: 10.1038/nprot.2011.434. Nat Protoc. 2012. PMID: 22222789 - An unmet actin requirement explains the mitotic inhibition of clathrin-mediated endocytosis.
Kaur S, Fielding AB, Gassner G, Carter NJ, Royle SJ. Kaur S, et al. Elife. 2014 Feb 18;3:e00829. doi: 10.7554/eLife.00829. Elife. 2014. PMID: 24550251 Free PMC article. - Genome-scale single-cell mechanical phenotyping reveals disease-related genes involved in mitotic rounding.
Toyoda Y, Cattin CJ, Stewart MP, Poser I, Theis M, Kurzchalia TV, Buchholz F, Hyman AA, Müller DJ. Toyoda Y, et al. Nat Commun. 2017 Nov 2;8(1):1266. doi: 10.1038/s41467-017-01147-6. Nat Commun. 2017. PMID: 29097687 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous