Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site - PubMed (original) (raw)
Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site
M F Belcourt et al. Cell. 1990.
Abstract
Ribosomal frameshifting regulates expression of the TYB gene of yeast Ty retrotransposons. We previously demonstrated that a 14 nucleotide sequence conserved between two families of Ty elements was necessary and sufficient to support ribosomal frameshifting. This work demonstrates that only 7 of these 14 nucleotides are needed for normal levels of frameshifting. Any change to the sequence CUU-AGG-C drastically reduces frameshifting; this suggests that two specific tRNAs, tRNA(UAGLeu) and tRNA(CCUArg), are involved in the event. Our tRNA overproduction data suggest that a leucyl-tRNA, probably tRNA(UAGLeu), an unusual leucine isoacceptor that recognizes all six leucine codons, slips from CUU-Leu onto UUA-Leu (in the +1 reading frame) during a translational pause at the AGG-Arg codon induced by the low availability of tRNA(CCUArg), encoded by a single-copy essential gene. Frameshifting is also directional and reading frame specific. Interestingly, frameshifting is inhibited when the "slip" CUU codon is located three codons downstream, but not four or more codons downstream, of the translational initiation codon.
Similar articles
- Special peptidyl-tRNA molecules can promote translational frameshifting without slippage.
Vimaladithan A, Farabaugh PJ. Vimaladithan A, et al. Mol Cell Biol. 1994 Dec;14(12):8107-16. doi: 10.1128/mcb.14.12.8107-8116.1994. Mol Cell Biol. 1994. PMID: 7969148 Free PMC article. - A rare tRNA-Arg(CCU) that regulates Ty1 element ribosomal frameshifting is essential for Ty1 retrotransposition in Saccharomyces cerevisiae.
Kawakami K, Pande S, Faiola B, Moore DP, Boeke JD, Farabaugh PJ, Strathern JN, Nakamura Y, Garfinkel DJ. Kawakami K, et al. Genetics. 1993 Oct;135(2):309-20. doi: 10.1093/genetics/135.2.309. Genetics. 1993. PMID: 8243996 Free PMC article. - A novel programed frameshift expresses the POL3 gene of retrotransposon Ty3 of yeast: frameshifting without tRNA slippage.
Farabaugh PJ, Zhao H, Vimaladithan A. Farabaugh PJ, et al. Cell. 1993 Jul 16;74(1):93-103. doi: 10.1016/0092-8674(93)90297-4. Cell. 1993. PMID: 8267715 Free PMC article. - Yeast retrotransposons and tRNAs.
Voytas DF, Boeke JD. Voytas DF, et al. Trends Genet. 1993 Dec;9(12):421-7. doi: 10.1016/0168-9525(93)90105-q. Trends Genet. 1993. PMID: 8122309 Review. - P-site tRNA is a crucial initiator of ribosomal frameshifting.
Baranov PV, Gesteland RF, Atkins JF. Baranov PV, et al. RNA. 2004 Feb;10(2):221-30. doi: 10.1261/rna.5122604. RNA. 2004. PMID: 14730021 Free PMC article. Review.
Cited by
- Transposition of a Ty3 GAG3-POL3 fusion mutant is limited by availability of capsid protein.
Kirchner J, Sandmeyer SB, Forrest DB. Kirchner J, et al. J Virol. 1992 Oct;66(10):6081-92. doi: 10.1128/JVI.66.10.6081-6092.1992. J Virol. 1992. PMID: 1326658 Free PMC article. - Mn2+ suppressor mutations and biochemical communication between Ty1 reverse transcriptase and RNase H domains.
Yarrington RM, Chen J, Bolton EC, Boeke JD. Yarrington RM, et al. J Virol. 2007 Sep;81(17):9004-12. doi: 10.1128/JVI.02502-06. Epub 2007 May 30. J Virol. 2007. PMID: 17537863 Free PMC article. - Ribosomal protein L5 helps anchor peptidyl-tRNA to the P-site in Saccharomyces cerevisiae.
Meskauskas A, Dinman JD. Meskauskas A, et al. RNA. 2001 Aug;7(8):1084-96. doi: 10.1017/s1355838201001480. RNA. 2001. PMID: 11497428 Free PMC article. - Identification of Hepta- and Octo-Uridine stretches as sole signals for programmed +1 and -1 ribosomal frameshifting during translation of SARS-CoV ORF 3a variants.
Wang X, Wong SM, Liu DX. Wang X, et al. Nucleic Acids Res. 2006 Feb 25;34(4):1250-60. doi: 10.1093/nar/gkl017. Print 2006. Nucleic Acids Res. 2006. PMID: 16500894 Free PMC article. - Maintenance of the correct open reading frame by the ribosome.
Hansen TM, Baranov PV, Ivanov IP, Gesteland RF, Atkins JF. Hansen TM, et al. EMBO Rep. 2003 May;4(5):499-504. doi: 10.1038/sj.embor.embor825. EMBO Rep. 2003. PMID: 12717454 Free PMC article.
References
- Adams S.E., Mellor J., Gull K., Sim R.B., Tuite M.F., Kingsman S.M., Kingsman A.J. The functions and relationships of Ty-VLP proteins in yeast reflect those of mammalian retroviral proteins. Cell. 1987;49:111–119. - PubMed
- Barrell B.G., Anderson S., Bankier A.T., DeBruijn M.H.L., Chen E., Coulson A.R., Drouin J., Eperon I.C., Nierlich D.P., Roe B.A., Sanger F., Schreier P.H., Smith A.J.H., Staden R., Young I.G. Vol. 77. 1980. Different pattern of codon recognition by mammalian mitochondrial tRNAs; pp. 3164–3166. (Proc. Natl. Acad. Sci. USA). - PMC - PubMed
- Beremand M.N., Blumenthal T. Overlapping genes in RNA phage: a new protein implicated in lysis. Cell. 1979;18:257–266. - PubMed
- Boeke J.D., Garfinkel D.J., Styles C.A., Fink G.R. Ty elements transpose through an RNA intermediate. Cell. 1985;40:491–500. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources