Cerebral artery dilatation maintains cerebral oxygenation at extreme altitude and in acute hypoxia--an ultrasound and MRI study - PubMed (original) (raw)
Clinical Trial
. 2011 Oct;31(10):2019-29.
doi: 10.1038/jcbfm.2011.81. Epub 2011 Jun 8.
Mark E G Edsell, Indran Davagnanam, Shashivadan P Hirani, Dan S Martin, Denny Z H Levett, John S Thornton, Xavier Golay, Lisa Strycharczuk, Stanton P Newman, Hugh E Montgomery, Mike P W Grocott, Christopher H E Imray; Caudwell Xtreme Everest Research Group
Collaborators, Affiliations
- PMID: 21654697
- PMCID: PMC3208157
- DOI: 10.1038/jcbfm.2011.81
Clinical Trial
Cerebral artery dilatation maintains cerebral oxygenation at extreme altitude and in acute hypoxia--an ultrasound and MRI study
Mark H Wilson et al. J Cereb Blood Flow Metab. 2011 Oct.
Abstract
Transcranial Doppler is a widely used noninvasive technique for assessing cerebral artery blood flow. All previous high altitude studies assessing cerebral blood flow (CBF) in the field that have used Doppler to measure arterial blood velocity have assumed vessel diameter to not alter. Here, we report two studies that demonstrate this is not the case. First, we report the highest recorded study of CBF (7,950 m on Everest) and demonstrate that above 5,300 m, middle cerebral artery (MCA) diameter increases (n=24 at 5,300 m, 14 at 6,400 m, and 5 at 7,950 m). Mean MCA diameter at sea level was 5.30 mm, at 5,300 m was 5.23 mm, at 6,400 m was 6.66 mm, and at 7,950 m was 9.34 mm (P<0.001 for change between 5,300 and 7,950 m). The dilatation at 7,950 m reversed with oxygen. Second, we confirm this dilatation by demonstrating the same effect (and correlating it with ultrasound) during hypoxia (FiO(2)=12% for 3 hours) in a 3-T magnetic resonance imaging study at sea level (n=7). From these results, we conclude that it cannot be assumed that cerebral artery diameter is constant, especially during alterations of inspired oxygen partial pressure, and that transcranial 2D ultrasound is a technique that can be used at the bedside or in the remote setting to assess MCA caliber.
Figures
Figure 1
Ultrasound images demonstrating (A) velocity/ratio and (B) vessel diameter measurement and (C) composite of four magnetic resonance imaging (MRI) images, demonstrating middle cerebral artery (MCA) multiplanar reconstruction and analysis.
Figure 2
Composite of seven graphs, demonstrating changes in blood pressure, arterial oxygen saturation (SaO2), regional cerebral oxygenation (rSO2), end tidal CO2 (ETCO2), peak systolic, end diastolic and mean velocities, middle cerebral artery (MCA) diameter (MCADiam), calculated MCA flow (MCAFlow), and oxygen delivery (note: blood pressure and EtCO2 were not reassessed after oxygen administration at 7,950 m).
Figure 3
A graph demonstrating the correlation between transcranial Doppler (TCD) and magnetic resonance imaging (MRI) measurements of middle cerebral artery (MCA) diameter.
Similar articles
- Time course variations in the mechanisms by which cerebral oxygen delivery is maintained on exposure to hypoxia/altitude.
Imray C, Chan C, Stubbings A, Rhodes H, Patey S, Wilson MH, Bailey DM, Wright AD; Birmingham Medical Research Expeditionary Society. Imray C, et al. High Alt Med Biol. 2014 Apr;15(1):21-7. doi: 10.1089/ham.2013.1079. Epub 2014 Feb 21. High Alt Med Biol. 2014. PMID: 24559404 - A longitudinal study of cerebral blood flow under hypoxia at high altitude using 3D pseudo-continuous arterial spin labeling.
Liu W, Liu J, Lou X, Zheng D, Wu B, Wang DJ, Ma L. Liu W, et al. Sci Rep. 2017 Feb 27;7:43246. doi: 10.1038/srep43246. Sci Rep. 2017. PMID: 28240265 Free PMC article. - Regional cerebral blood flow in humans at high altitude: gradual ascent and 2 wk at 5,050 m.
Willie CK, Smith KJ, Day TA, Ray LA, Lewis NC, Bakker A, Macleod DB, Ainslie PN. Willie CK, et al. J Appl Physiol (1985). 2014 Apr 1;116(7):905-10. doi: 10.1152/japplphysiol.00594.2013. Epub 2013 Jun 27. J Appl Physiol (1985). 2014. PMID: 23813533 - AltitudeOmics: cerebral autoregulation during ascent, acclimatization, and re-exposure to high altitude and its relation with acute mountain sickness.
Subudhi AW, Fan JL, Evero O, Bourdillon N, Kayser B, Julian CG, Lovering AT, Panerai RB, Roach RC. Subudhi AW, et al. J Appl Physiol (1985). 2014 Apr 1;116(7):724-9. doi: 10.1152/japplphysiol.00880.2013. Epub 2013 Dec 26. J Appl Physiol (1985). 2014. PMID: 24371013 - Cerebral blood flow at high altitude.
Ainslie PN, Subudhi AW. Ainslie PN, et al. High Alt Med Biol. 2014 Jun;15(2):133-40. doi: 10.1089/ham.2013.1138. High Alt Med Biol. 2014. PMID: 24971767 Review.
Cited by
- Acute and chronic hypoxia: implications for cerebral function and exercise tolerance.
Goodall S, Twomey R, Amann M. Goodall S, et al. Fatigue. 2014;2(2):73-92. doi: 10.1080/21641846.2014.909963. Fatigue. 2014. PMID: 25593787 Free PMC article. - Lipopolysaccharide infusion enhances dynamic cerebral autoregulation without affecting cerebral oxygen vasoreactivity in healthy volunteers.
Berg RM, Plovsing RR, Evans KA, Christiansen CB, Bailey DM, Holstein-Rathlou NH, Møller K. Berg RM, et al. Crit Care. 2013 Oct 16;17(5):R238. doi: 10.1186/cc13062. Crit Care. 2013. PMID: 24131656 Free PMC article. - Effect of acute hypoxemia on cerebral blood flow velocity control during lower body negative pressure.
van Helmond N, Johnson BD, Holbein WW, Petersen-Jones HG, Harvey RE, Ranadive SM, Barnes JN, Curry TB, Convertino VA, Joyner MJ. van Helmond N, et al. Physiol Rep. 2018 Feb;6(4):e13594. doi: 10.14814/phy2.13594. Physiol Rep. 2018. PMID: 29464923 Free PMC article. - Hypoxemia, oxygen content, and the regulation of cerebral blood flow.
Hoiland RL, Bain AR, Rieger MG, Bailey DM, Ainslie PN. Hoiland RL, et al. Am J Physiol Regul Integr Comp Physiol. 2016 Mar 1;310(5):R398-413. doi: 10.1152/ajpregu.00270.2015. Epub 2015 Dec 16. Am J Physiol Regul Integr Comp Physiol. 2016. PMID: 26676248 Free PMC article. Review. - MEDEX 2015: Prophylactic Effects of Positive Expiratory Pressure in Trekkers at Very High Altitude.
Rupp T, Maufrais C, Walther G, Esteve F, Macdonald JH, Bouzat P, Verges S. Rupp T, et al. Front Physiol. 2021 Sep 21;12:710622. doi: 10.3389/fphys.2021.710622. eCollection 2021. Front Physiol. 2021. PMID: 34621182 Free PMC article.
References
- Ainslie PN, Burgess K, Subedi P, Burgess KR. Alterations in cerebral dynamics at high altitude following partial acclimatization in humans: wakefulness and sleep. J Appl Physiol. 2007;102:658–664. - PubMed
- Ainslie PN, Ogoh S, Burgess K, Celi L, McGrattan K, Peebles K, Murrell C, Subedi P, Burgess KR. Differential effects of acute hypoxia and high altitude on cerebral blood flow velocity and dynamic cerebral autoregulation: alterations with hyperoxia. J Appl Physiol. 2008;104:490–498. - PubMed
- Appenzeller O, Passino C, Roach R, Gamboa J, Gamboa A, Bernardi L, Bonfichi M, Malcovati L. Cerebral vasoreactivity in Andeans and headache at sea level. J Neurol Sci. 2004;219:101–106. - PubMed
- Baumgartner RW, Bartsch P, Maggiorini M, Waber U, Oelz O. Enhanced cerebral blood flow in acute mountain sickness. Aviat Space Environ Med. 1994;65:726–729. - PubMed
- Baumgartner RW, Spyridopoulos I, Bartsch P, Maggiorini M, Oelz O. Acute mountain sickness is not related to cerebral blood flow: a decompression chamber study. J Appl Physiol. 1999;86:1578–1582. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources