Characterization of pyrimidine-repressible and arginine-repressible carbamyl phosphate synthetases from Bacillus subtilis - PubMed (original) (raw)
Characterization of pyrimidine-repressible and arginine-repressible carbamyl phosphate synthetases from Bacillus subtilis
T J Paulus et al. J Bacteriol. 1979 Jan.
Abstract
The number and properties of carbamyl phosphate synthetases in Bacillus subtilis have been uncertain because of conflicting genetic results and instability of the enzyme in extracts. The discovery of a previously unrecognized requirement of B. subtilis carbamyl phosphate synthetases for a high concentration of potassium ions for activity and stability permitted unequivocal demonstration that this bacterium elaborates two carbamyl phosphate synthetases. Carbamyl phosphate synthetase A was shown to be repressed by arginine, to have a molecular weight of about 200,000, and to be coded for by a gene that maps near argC4. This isozyme was insensitive to metabolites of the arginine and pyrimidine biosynthetic pathways. Carbamyl phosphate synthetase P was found to be repressed by uracil, to have a molecular weight of 90,000 to 100,000, and to be coded for by a gene that maps near the other pyr genes. This isozyme was activated by phosphoridine nucleotides. Other kinetic properties of the two isozymes were compared. Bacillus thus resembles eucaryotic microbes in producing two carbamyl phosphate synthetases, rather than the enteric bacteria, which produce a single carbamyl phosphate synthetase.
Similar articles
- Synthesis and inactivation of carbamyl phosphate synthetase isozymes of Bacillus subtilis during growth and sporulation.
Paulus TJ, Switzer RL. Paulus TJ, et al. J Bacteriol. 1979 Dec;140(3):769-73. doi: 10.1128/jb.140.3.769-773.1979. J Bacteriol. 1979. PMID: 230177 Free PMC article. - Biochemical and genetic characterization of a carbamyl phosphate synthetase mutant of Escherichia coli K12.
Bolivar F, Galván M, Martuscelli J. Bolivar F, et al. J Gen Microbiol. 1976 May;94(1):142-8. doi: 10.1099/00221287-94-1-142. J Gen Microbiol. 1976. PMID: 180236 - Coordinate synthesis of the enzymes of pyrimidine biosynthesis in Bacillus subtilis.
Paulus TJ, McGarry TJ, Shekelle PG, Rosenzweig S, Switzer RL. Paulus TJ, et al. J Bacteriol. 1982 Feb;149(2):775-8. doi: 10.1128/jb.149.2.775-778.1982. J Bacteriol. 1982. PMID: 6120161 Free PMC article. - Glutamine-dependent carbamyl phosphate synthetase: catalysis and regulation.
Meister A, Powers SG. Meister A, et al. Adv Enzyme Regul. 1977 Oct 3-4;16:289-315. doi: 10.1016/0065-2571(78)90079-1. Adv Enzyme Regul. 1977. PMID: 211819 Review. No abstract available. - Two carbamyl phosphate synthetases of mammals: specific roles in control of pyrimidine and urea biosynthesis.
Tatibana M, Shigesada K. Tatibana M, et al. Adv Enzyme Regul. 1972;10:249-71. doi: 10.1016/0065-2571(72)90017-9. Adv Enzyme Regul. 1972. PMID: 4347313 Review. No abstract available.
Cited by
- A Multi-Omics, Machine Learning-Aware, Genome-Wide Metabolic Model of Bacillus Subtilis Refines the Gene Expression and Cell Growth Prediction.
Bi X, Cheng Y, Lv X, Liu Y, Li J, Du G, Chen J, Liu L. Bi X, et al. Adv Sci (Weinh). 2024 Nov;11(42):e2408705. doi: 10.1002/advs.202408705. Epub 2024 Sep 17. Adv Sci (Weinh). 2024. PMID: 39287062 Free PMC article. - Functional genetics of human gut commensal Bacteroides thetaiotaomicron reveals metabolic requirements for growth across environments.
Liu H, Shiver AL, Price MN, Carlson HK, Trotter VV, Chen Y, Escalante V, Ray J, Hern KE, Petzold CJ, Turnbaugh PJ, Huang KC, Arkin AP, Deutschbauer AM. Liu H, et al. Cell Rep. 2021 Mar 2;34(9):108789. doi: 10.1016/j.celrep.2021.108789. Cell Rep. 2021. PMID: 33657378 Free PMC article. - Regulation of carbamoylphosphate synthesis in Escherichia coli: an amazing metabolite at the crossroad of arginine and pyrimidine biosynthesis.
Charlier D, Nguyen Le Minh P, Roovers M. Charlier D, et al. Amino Acids. 2018 Dec;50(12):1647-1661. doi: 10.1007/s00726-018-2654-z. Epub 2018 Sep 20. Amino Acids. 2018. PMID: 30238253 Free PMC article. Review. - Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance.
Hove-Jensen B, Andersen KR, Kilstrup M, Martinussen J, Switzer RL, Willemoës M. Hove-Jensen B, et al. Microbiol Mol Biol Rev. 2016 Dec 28;81(1):e00040-16. doi: 10.1128/MMBR.00040-16. Print 2017 Mar. Microbiol Mol Biol Rev. 2016. PMID: 28031352 Free PMC article. Review. - The smallest active carbamoyl phosphate synthetase was identified in the human gut archaeon Methanobrevibacter smithii.
Popa E, Perera N, Kibédi-Szabó CZ, Guy-Evans H, Evans DR, Purcarea C. Popa E, et al. J Mol Microbiol Biotechnol. 2012;22(5):287-99. doi: 10.1159/000342520. Epub 2012 Oct 27. J Mol Microbiol Biotechnol. 2012. PMID: 23107800 Free PMC article.
References
- J Bacteriol. 1961 May;81(5):741-6 - PubMed
- Arch Biochem Biophys. 1964 Mar;104:438-47 - PubMed
- J Biol Chem. 1951 Nov;193(1):265-75 - PubMed
- Eur J Biochem. 1977 Nov 1;80(2):401-9 - PubMed
- J Biochem. 1972 Sep;72(3):537-47 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases