TDP-43 autoregulation: implications for disease - PubMed (original) (raw)
Review
TDP-43 autoregulation: implications for disease
Mauricio Budini et al. J Mol Neurosci. 2011 Nov.
Abstract
TDP-43 is a nuclear protein that has been shown to play a central role in RNA metabolism. In recent years, this protein has become very important in the study of neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration (FTLD). These diseases share, as common feature, the presence of abnormally aggregated, posttranslationally modified, and mislocalized TDP-43 in the cell cytoplasm of both neurons and glial cells. A major question in TDP-43 research is represented by the investigation of the mechanism(s) that trigger this process and its potential consequences. Regarding the first issue, it is likely that relative protein expression levels might play an important role as has been demonstrated for many protein aggregation processes. In fact, the eventual misregulation of TDP-43 expression leading to enhanced protein production might well correlate with enhanced aggregation, and thus results in increasingly harmful gain- or loss-of-function effects on cellular metabolism. For this reason, it is important to determine the mechanisms that act to regulate TDP-43 levels within the cell. In normal conditions, it is now clear that TDP-43 can modulate its own protein levels through a negative feedback loop triggered by binding to its own RNA in the 3'UTR region leading to mRNA degradation. This work discusses how an eventual disruption of this mechanism might affect TDP-43 pathology, focusing in particular on its association with stress granules and intrinsic aggregation properties.
Similar articles
- The RNA-binding motif 45 (RBM45) protein accumulates in inclusion bodies in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) patients.
Collins M, Riascos D, Kovalik T, An J, Krupa K, Krupa K, Hood BL, Conrads TP, Renton AE, Traynor BJ, Bowser R. Collins M, et al. Acta Neuropathol. 2012 Nov;124(5):717-32. doi: 10.1007/s00401-012-1045-x. Epub 2012 Sep 21. Acta Neuropathol. 2012. PMID: 22993125 Free PMC article. - TDP-43 aggregation in neurodegeneration: are stress granules the key?
Dewey CM, Cenik B, Sephton CF, Johnson BA, Herz J, Yu G. Dewey CM, et al. Brain Res. 2012 Jun 26;1462:16-25. doi: 10.1016/j.brainres.2012.02.032. Epub 2012 Feb 22. Brain Res. 2012. PMID: 22405725 Free PMC article. Review. - Distinct TDP-43 inclusion morphologies in frontotemporal lobar degeneration with and without amyotrophic lateral sclerosis.
Tan RH, Yang Y, Kim WS, Dobson-Stone C, Kwok JB, Kiernan MC, Halliday GM. Tan RH, et al. Acta Neuropathol Commun. 2017 Oct 27;5(1):76. doi: 10.1186/s40478-017-0480-2. Acta Neuropathol Commun. 2017. PMID: 29078806 Free PMC article. - TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration.
Wils H, Kleinberger G, Janssens J, Pereson S, Joris G, Cuijt I, Smits V, Ceuterick-de Groote C, Van Broeckhoven C, Kumar-Singh S. Wils H, et al. Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3858-63. doi: 10.1073/pnas.0912417107. Epub 2010 Feb 3. Proc Natl Acad Sci U S A. 2010. PMID: 20133711 Free PMC article.
Cited by
- Disease-associated mutations of TDP-43 promote turnover of the protein through the proteasomal pathway.
Araki W, Minegishi S, Motoki K, Kume H, Hohjoh H, Araki YM, Tamaoka A. Araki W, et al. Mol Neurobiol. 2014 Dec;50(3):1049-58. doi: 10.1007/s12035-014-8644-6. Epub 2014 Jan 30. Mol Neurobiol. 2014. PMID: 24477737 - Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses.
Kapeli K, Pratt GA, Vu AQ, Hutt KR, Martinez FJ, Sundararaman B, Batra R, Freese P, Lambert NJ, Huelga SC, Chun SJ, Liang TY, Chang J, Donohue JP, Shiue L, Zhang J, Zhu H, Cambi F, Kasarskis E, Hoon S, Ares M Jr, Burge CB, Ravits J, Rigo F, Yeo GW. Kapeli K, et al. Nat Commun. 2016 Jul 5;7:12143. doi: 10.1038/ncomms12143. Nat Commun. 2016. PMID: 27378374 Free PMC article. - RNA-binding deficient TDP-43 drives cognitive decline in a mouse model of TDP-43 proteinopathy.
Necarsulmer JC, Simon JM, Evangelista BA, Chen Y, Tian X, Nafees S, Marquez AB, Jiang H, Wang P, Ajit D, Nikolova VD, Harper KM, Ezzell JA, Lin FC, Beltran AS, Moy SS, Cohen TJ. Necarsulmer JC, et al. Elife. 2023 Oct 11;12:RP85921. doi: 10.7554/eLife.85921. Elife. 2023. PMID: 37819053 Free PMC article. - A nonsense mutation in mouse Tardbp affects TDP43 alternative splicing activity and causes limb-clasping and body tone defects.
Ricketts T, McGoldrick P, Fratta P, de Oliveira HM, Kent R, Phatak V, Brandner S, Blanco G, Greensmith L, Acevedo-Arozena A, Fisher EM. Ricketts T, et al. PLoS One. 2014 Jan 21;9(1):e85962. doi: 10.1371/journal.pone.0085962. eCollection 2014. PLoS One. 2014. PMID: 24465814 Free PMC article. - Mitochondrial dysfunction and decrease in body weight of a transgenic knock-in mouse model for TDP-43.
Stribl C, Samara A, Trümbach D, Peis R, Neumann M, Fuchs H, Gailus-Durner V, Hrabě de Angelis M, Rathkolb B, Wolf E, Beckers J, Horsch M, Neff F, Kremmer E, Koob S, Reichert AS, Hans W, Rozman J, Klingenspor M, Aichler M, Walch AK, Becker L, Klopstock T, Glasl L, Hölter SM, Wurst W, Floss T. Stribl C, et al. J Biol Chem. 2014 Apr 11;289(15):10769-10784. doi: 10.1074/jbc.M113.515940. Epub 2014 Feb 10. J Biol Chem. 2014. PMID: 24515116 Free PMC article.
References
- J Biol Chem. 2010 Aug 20;285(34):26304-14 - PubMed
- J Biol Chem. 2011 May 27;286(21):18845-55 - PubMed
- Prion. 2011 Jan-Mar;5(1):1-5 - PubMed
- FEBS Lett. 2009 May 19;583(10):1586-92 - PubMed
- J Neurol Sci. 2010 Jan 15;288(1-2):1-12 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical