Human cryptochrome exhibits light-dependent magnetosensitivity - PubMed (original) (raw)
Human cryptochrome exhibits light-dependent magnetosensitivity
Lauren E Foley et al. Nat Commun. 2011.
Free PMC article
Abstract
Humans are not believed to have a magnetic sense, even though many animals use the Earth's magnetic field for orientation and navigation. One model of magnetosensing in animals proposes that geomagnetic fields are perceived by light-sensitive chemical reactions involving the flavoprotein cryptochrome (CRY). Here we show using a transgenic approach that human CRY2, which is heavily expressed in the retina, can function as a magnetosensor in the magnetoreception system of Drosophila and that it does so in a light-dependent manner. The results show that human CRY2 has the molecular capability to function as a light-sensitive magnetosensor and reopen an area of sensory biology that is ready for further exploration in humans.
Figures
Figure 1. Human CRY2 rescues light-dependent magnetoreception in CRY-deficient flies.
(a) A _tim-GAL4_-driven human CRY2 transgene (tim-GAL4/UAS-hCRY2) rescues magnetic responses in the CRY loss-of-function cry b mutant background. For comparison, naive and trained responses to the magnetic field are shown for wild-type Canton-S flies (left bar set; reproduced from ref. 8) and for a _tim-GAL4_-driven Drosophila cry transgene in cry b flies (tim-GAL4/UAS-dcry) (second from left bar set; reproduced from ref. 10). The UAS-hCRY/+ transgene alone (without the tim-GAL4 driver) did not result in significant magnetosentitive responses (_P_>0.05; right bar set). Bars show PI values for naive (white, dcry; or red, hCRY2) and trained (black, dcry; or green, hCRY2) groups. To test whether flies responded to the experimental magnetic field, we either used a one-sample _t_-test to compare naive PI values with zero (that is, PI value expected with no response to the magnetic field) or a Student's _t_-test to compare PI values between trained and naive groups. Numbers represent groups tested. Values are mean±s.e.m. *P<0.05; **P<0.01; ***P<0.001. Genotypes in parentheses: tim-GAL4/UAS-dcry (y w; tim-GAL4/UAS-mycdcry; cry b); tim-GAL4/UAS-hCRY (y w; tim-GAL4/UAS-mychCRY2; cry b); and UAS-dcry/+ (y w; UAS-mychCRY2/+; cry b). (b) Light dependence of magnetic responses rescued by human (h)CRY2 (y w; tim-GAL4/UAS-mychCRY2; _cry_b). The full-spectrum data are the same as those depicted in a. The irradiance curves for the three light conditions used are the same as those used previously. Bars show PI values for naive (red) and trained (green) groups. To test whether flies responded to the experimental magnetic field, we either used a one-sample _t_-test to compare naive PI values to zero (that is, PI value expected with no response to the magnetic field) or a Student's _t_-test to compare PI values between trained and naive groups. Numbers represent groups tested. Values are mean±s.e.m. **P<0.01, ***P<0.001.
Similar articles
- Cryptochrome mediates light-dependent magnetosensitivity in Drosophila.
Gegear RJ, Casselman A, Waddell S, Reppert SM. Gegear RJ, et al. Nature. 2008 Aug 21;454(7207):1014-8. doi: 10.1038/nature07183. Epub 2008 Jul 20. Nature. 2008. PMID: 18641630 Free PMC article. - Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies.
Wan G, Hayden AN, Iiams SE, Merlin C. Wan G, et al. Nat Commun. 2021 Feb 3;12(1):771. doi: 10.1038/s41467-021-21002-z. Nat Commun. 2021. PMID: 33536422 Free PMC article. - Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism.
Gegear RJ, Foley LE, Casselman A, Reppert SM. Gegear RJ, et al. Nature. 2010 Feb 11;463(7282):804-7. doi: 10.1038/nature08719. Epub 2010 Jan 24. Nature. 2010. PMID: 20098414 Free PMC article. - Insect magnetoreception: a Cry for mechanistic insights.
Merlin C. Merlin C. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023 Sep;209(5):785-792. doi: 10.1007/s00359-023-01636-8. Epub 2023 May 15. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023. PMID: 37184693 Review. - The Radical-Pair Mechanism of Magnetoreception.
Hore PJ, Mouritsen H. Hore PJ, et al. Annu Rev Biophys. 2016 Jul 5;45:299-344. doi: 10.1146/annurev-biophys-032116-094545. Epub 2016 May 16. Annu Rev Biophys. 2016. PMID: 27216936 Review.
Cited by
- Drosophila Cryptochrome: Variations in Blue.
Foley LE, Emery P. Foley LE, et al. J Biol Rhythms. 2020 Feb;35(1):16-27. doi: 10.1177/0748730419878290. Epub 2019 Oct 10. J Biol Rhythms. 2020. PMID: 31599203 Free PMC article. Review. - On the evolutionary trail of MagRs.
Zhang J, Chang Y, Zhang P, Zhang Y, Wei M, Han C, Wang S, Lu HM, Cai T, Xie C. Zhang J, et al. Zool Res. 2024 Jul 18;45(4):821-830. doi: 10.24272/j.issn.2095-8137.2024.074. Zool Res. 2024. PMID: 38894524 Free PMC article. - A light-dependent magnetoreception mechanism insensitive to light intensity and polarization.
Worster S, Mouritsen H, Hore PJ. Worster S, et al. J R Soc Interface. 2017 Sep;14(134):20170405. doi: 10.1098/rsif.2017.0405. J R Soc Interface. 2017. PMID: 28878033 Free PMC article. - A novel magnetic stimulator increases experimental pain tolerance in healthy volunteers - a double-blind sham-controlled crossover study.
Kortekaas R, van Nierop LE, Baas VG, Konopka KH, Harbers M, van der Hoeven JH, van Wijhe M, Aleman A, Maurits NM. Kortekaas R, et al. PLoS One. 2013 Apr 19;8(4):e61926. doi: 10.1371/journal.pone.0061926. Print 2013. PLoS One. 2013. PMID: 23620795 Free PMC article. Clinical Trial. - Cryptochromes and Hormone Signal Transduction under Near-Zero Magnetic Fields: New Clues to Magnetic Field Effects in a Rice Planthopper.
Wan GJ, Wang WJ, Xu JJ, Yang QF, Dai MJ, Zhang FJ, Sword GA, Pan WD, Chen FJ. Wan GJ, et al. PLoS One. 2015 Jul 14;10(7):e0132966. doi: 10.1371/journal.pone.0132966. eCollection 2015. PLoS One. 2015. PMID: 26173003 Free PMC article.
References
- Wiltschko W. & Wilschko R. Magnetic orientation and magnetoreception in birds and other animals. J. Comp. Physiol. A 191, 675–693 (2005). - PubMed
- Lohmann K. J., Lohmann C. M. F. & Putman N. F. Magnetic maps in animals: nature's GPS. J. Exp. Biol. 210, 3697–3705 (2007). - PubMed
- Phillips J. B., Muheim R. & Jorge P. E. A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and special perception? J. Exp. Biol. 213, 3247–3255 (2010). - PubMed
- Lohmann K. J. Q&A: animal behaviour: magnetic-field perception. Nature 464, 1140–1142 (2010). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases