Direct stochastic optical reconstruction microscopy with standard fluorescent probes - PubMed (original) (raw)
. 2011 Jun 16;6(7):991-1009.
doi: 10.1038/nprot.2011.336.
Affiliations
- PMID: 21720313
- DOI: 10.1038/nprot.2011.336
Direct stochastic optical reconstruction microscopy with standard fluorescent probes
Sebastian van de Linde et al. Nat Protoc. 2011.
Abstract
Direct stochastic optical reconstruction microscopy (dSTORM) uses conventional fluorescent probes such as labeled antibodies or chemical tags for subdiffraction resolution fluorescence imaging with a lateral resolution of ∼20 nm. In contrast to photoactivated localization microscopy (PALM) with photoactivatable fluorescent proteins, dSTORM experiments start with bright fluorescent samples in which the fluorophores have to be transferred to a stable and reversible OFF state. The OFF state has a lifetime in the range of 100 milliseconds to several seconds after irradiation with light intensities low enough to ensure minimal photodestruction. Either spontaneously or photoinduced on irradiation with a second laser wavelength, a sparse subset of fluorophores is reactivated and their positions are precisely determined. Repetitive activation, localization and deactivation allow a temporal separation of spatially unresolved structures in a reconstructed image. Here we present a step-by-step protocol for dSTORM imaging in fixed and living cells on a wide-field fluorescence microscope, with standard fluorescent probes focusing especially on the photoinduced fine adjustment of the ratio of fluorophores residing in the ON and OFF states. Furthermore, we discuss labeling strategies, acquisition parameters, and temporal and spatial resolution. The ultimate step of data acquisition and data processing can be performed in seconds to minutes.
Similar articles
- Practical limitations of superresolution imaging due to conventional sample preparation revealed by a direct comparison of CLSM, SIM and dSTORM.
Bachmann M, Fiederling F, Bastmeyer M. Bachmann M, et al. J Microsc. 2016 Jun;262(3):306-15. doi: 10.1111/jmi.12365. Epub 2015 Dec 22. J Microsc. 2016. PMID: 26694787 - Direct stochastic optical reconstruction microscopy (dSTORM).
Endesfelder U, Heilemann M. Endesfelder U, et al. Methods Mol Biol. 2015;1251:263-76. doi: 10.1007/978-1-4939-2080-8_14. Methods Mol Biol. 2015. PMID: 25391804 - Preparation of photoswitchable labeled antibodies for STORM imaging.
Bates M, Jones SA, Zhuang X. Bates M, et al. Cold Spring Harb Protoc. 2013 Jun 1;2013(6):540-1. doi: 10.1101/pdb.prot075168. Cold Spring Harb Protoc. 2013. PMID: 23734027 - Technical review: types of imaging-direct STORM.
Jensen E, Crossman DJ. Jensen E, et al. Anat Rec (Hoboken). 2014 Dec;297(12):2227-31. doi: 10.1002/ar.22960. Epub 2014 Jul 4. Anat Rec (Hoboken). 2014. PMID: 24995970 Review. - Photoactivatable BODIPYs for Live-Cell PALM.
Zhang Y, Zheng Y, Tomassini A, Singh AK, Raymo FM. Zhang Y, et al. Molecules. 2023 Mar 7;28(6):2447. doi: 10.3390/molecules28062447. Molecules. 2023. PMID: 36985424 Free PMC article. Review.
Cited by
- A cross-nearest neighbor/Monte Carlo algorithm for single-molecule localization microscopy defines interactions between p53, Mdm2, and MEG3.
Bauer NC, Yang A, Wang X, Zhou Y, Klibanski A, Soberman RJ. Bauer NC, et al. J Biol Chem. 2021 Jan-Jun;296:100540. doi: 10.1016/j.jbc.2021.100540. Epub 2021 Mar 12. J Biol Chem. 2021. PMID: 33722609 Free PMC article. - Super-resolution imaging of multiple cells by optimised flat-field epi-illumination.
Douglass KM, Sieben C, Archetti A, Lambert A, Manley S. Douglass KM, et al. Nat Photonics. 2016 Nov;10(11):705-708. doi: 10.1038/nphoton.2016.200. Epub 2016 Oct 17. Nat Photonics. 2016. PMID: 27818707 Free PMC article. No abstract available. - Fluorescence localization microscopy: The transition from concept to biological research tool.
Owen DM, Sauer M, Gaus K. Owen DM, et al. Commun Integr Biol. 2012 Jul 1;5(4):345-9. doi: 10.4161/cib.20348. Commun Integr Biol. 2012. PMID: 23060958 Free PMC article. - Towards Unbiased Fluorophore Counting in Superresolution Fluorescence Microscopy.
Laitenberger O, Aspelmeier T, Staudt T, Geisler C, Munk A, Egner A. Laitenberger O, et al. Nanomaterials (Basel). 2023 Jan 23;13(3):459. doi: 10.3390/nano13030459. Nanomaterials (Basel). 2023. PMID: 36770420 Free PMC article. - Temporal Filtering to Improve Single Molecule Identification in High Background Samples.
Reismann AWAF, Atanasova L, Schrangl L, Zeilinger S, Schütz GJ. Reismann AWAF, et al. Molecules. 2018 Dec 17;23(12):3338. doi: 10.3390/molecules23123338. Molecules. 2018. PMID: 30562966 Free PMC article.
References
- Photochem Photobiol Sci. 2011 Apr;10(4):499-506 - PubMed
- Free Radic Biol Med. 1999 Nov;27(9-10):916-21 - PubMed
- Nat Cell Biol. 2003 Sep;Suppl:S1-7 - PubMed
- Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):2995-9 - PubMed
- J Biophotonics. 2010 Jul;3(7):446-54 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous