Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility - PubMed (original) (raw)
. 2011 Jul 10;43(8):761-7.
doi: 10.1038/ng.873.
Chris C A Spencer, Jennifer J Pointon, Zhan Su, David Harvey, Grazyna Kochan, Udo Oppermann, Alexander Dilthey, Matti Pirinen, Millicent A Stone, Louise Appleton, Loukas Moutsianas, Stephen Leslie, Tom Wordsworth, Tony J Kenna, Tugce Karaderi, Gethin P Thomas, Michael M Ward, Michael H Weisman, Claire Farrar, Linda A Bradbury, Patrick Danoy, Robert D Inman, Walter Maksymowych, Dafna Gladman, Proton Rahman; Spondyloarthritis Research Consortium of Canada (SPARCC); Ann Morgan, Helena Marzo-Ortega, Paul Bowness, Karl Gaffney, J S Hill Gaston, Malcolm Smith, Jacome Bruges-Armas, Ana-Rita Couto, Rosa Sorrentino, Fabiana Paladini, Manuel A Ferreira, Huji Xu, Yu Liu, Lei Jiang, Carlos Lopez-Larrea, Roberto Díaz-Peña, Antonio López-Vázquez, Tetyana Zayats, Gavin Band, Céline Bellenguez, Hannah Blackburn, Jenefer M Blackwell, Elvira Bramon, Suzannah J Bumpstead, Juan P Casas, Aiden Corvin, Nicholas Craddock, Panos Deloukas, Serge Dronov, Audrey Duncanson, Sarah Edkins, Colin Freeman, Matthew Gillman, Emma Gray, Rhian Gwilliam, Naomi Hammond, Sarah E Hunt, Janusz Jankowski, Alagurevathi Jayakumar, Cordelia Langford, Jennifer Liddle, Hugh S Markus, Christopher G Mathew, Owen T McCann, Mark I McCarthy, Colin N A Palmer, Leena Peltonen, Robert Plomin, Simon C Potter, Anna Rautanen, Radhi Ravindrarajah, Michelle Ricketts, Nilesh Samani, Stephen J Sawcer, Amy Strange, Richard C Trembath, Ananth C Viswanathan, Matthew Waller, Paul Weston, Pamela Whittaker, Sara Widaa, Nicholas W Wood, Gilean McVean, John D Reveille, B Paul Wordsworth, Matthew A Brown, Peter Donnelly; Australo-Anglo-American Spondyloarthritis Consortium (TASC); Wellcome Trust Case Control Consortium 2 (WTCCC2)
Affiliations
- PMID: 21743469
- PMCID: PMC3640413
- DOI: 10.1038/ng.873
Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility
David M Evans et al. Nat Genet. 2011.
Erratum in
- Nat Genet. 2011 Sep;43(9):919. Opperman, Udo [corrected to Oppermann, Udo]; Moutsianis, Loukas [corrected to Moutsianas, Loukas]
Abstract
Ankylosing spondylitis is a common form of inflammatory arthritis predominantly affecting the spine and pelvis that occurs in approximately 5 out of 1,000 adults of European descent. Here we report the identification of three variants in the RUNX3, LTBR-TNFRSF1A and IL12B regions convincingly associated with ankylosing spondylitis (P < 5 × 10(-8) in the combined discovery and replication datasets) and a further four loci at PTGER4, TBKBP1, ANTXR2 and CARD9 that show strong association across all our datasets (P < 5 × 10(-6) overall, with support in each of the three datasets studied). We also show that polymorphisms of ERAP1, which encodes an endoplasmic reticulum aminopeptidase involved in peptide trimming before HLA class I presentation, only affect ankylosing spondylitis risk in HLA-B27-positive individuals. These findings provide strong evidence that HLA-B27 operates in ankylosing spondylitis through a mechanism involving aberrant processing of antigenic peptides.
Figures
Figure 1
Association findings for the ERAP1 SNP rs30187 stratified by the HLA-B27 tag SNP rs4349859. rs4349859 allele A tags HLA-B27. Error bars, 95% confidence intervals. Note that the ERAP1 risk allele T only increases risk in individuals carrying at least one copy of the HLA-B27 risk allele tag. The odds ratios for the genotype combinations were calculated using logistic regression in the R software package including covariates for ancestry (where appropriate). Genotypes with the low risk CC/GG genotype were set as the baseline, and the other genotype combinations were coded according to a series of dichotomous indicator variables. Odds ratios were derived by exponentiating the relevant coefficient from the logistic regression.
Figure 2
The mean rate of trimming of N-terminal tryptophan (mol, substrate/mol, enzyme/sec) from 10-mer peptide WRVYEKCALK by wild-type ERAP1 and variants associated with ankylosing spondylitis (rs30187 (p.Lys528Arg), rs17482078 (p.Arg725Gln) and rs10050860 (p.Asp575Asn)). WT, wild type. Circles represent results for wild-type genotype samples, squares represent results for rs30187, upright triangles represent results for rs17482078 and inverted triangles refer to results for rs10050860.
Comment in
- Spondyloarthropathies: HLA-B27 and ERAP1 contribute to ankylosing spondylitis via aberrant peptide processing and presentation.
Warde N. Warde N. Nat Rev Rheumatol. 2011 Aug 2;7(9):498. doi: 10.1038/nrrheum.2011.112. Nat Rev Rheumatol. 2011. PMID: 21808290 No abstract available.
Similar articles
- Association of ankylosing spondylitis with HLA-B27 and ERAP1: pathogenic role of antigenic peptide.
Chen B, Li D, Xu W. Chen B, et al. Med Hypotheses. 2013 Jan;80(1):36-8. doi: 10.1016/j.mehy.2012.10.003. Epub 2012 Nov 1. Med Hypotheses. 2013. PMID: 23123136 - ERAP1 in ankylosing spondylitis: genetics, biology and pathogenetic role.
Alvarez-Navarro C, López de Castro JA. Alvarez-Navarro C, et al. Curr Opin Rheumatol. 2013 Jul;25(4):419-25. doi: 10.1097/BOR.0b013e328362042f. Curr Opin Rheumatol. 2013. PMID: 23656713 Review. - ERAP1/ERAP2 and RUNX3 polymorphisms are not associated with ankylosing spondylitis susceptibility in Chinese Han.
Su W, Du L, Liu S, Deng J, Cao Q, Yuan G, Kijlstra A, Yang P. Su W, et al. Clin Exp Immunol. 2018 Jul;193(1):95-102. doi: 10.1111/cei.13121. Epub 2018 Mar 30. Clin Exp Immunol. 2018. PMID: 29480940 Free PMC article. - Combined effects of ankylosing spondylitis-associated ERAP1 polymorphisms outside the catalytic and peptide-binding sites on the processing of natural HLA-B27 ligands.
Martín-Esteban A, Gómez-Molina P, Sanz-Bravo A, López de Castro JA. Martín-Esteban A, et al. J Biol Chem. 2014 Feb 14;289(7):3978-90. doi: 10.1074/jbc.M113.529610. Epub 2013 Dec 18. J Biol Chem. 2014. PMID: 24352655 Free PMC article. - ERAP1 and ankylosing spondylitis.
Keidel S, Chen L, Pointon J, Wordsworth P. Keidel S, et al. Curr Opin Immunol. 2013 Feb;25(1):97-102. doi: 10.1016/j.coi.2012.11.002. Curr Opin Immunol. 2013. PMID: 23452840 Review.
Cited by
- Understanding interactions between risk factors, and assessing the utility of the additive and multiplicative models through simulations.
Diaz-Gallo LM, Brynedal B, Westerlind H, Sandberg R, Ramsköld D. Diaz-Gallo LM, et al. PLoS One. 2021 Apr 26;16(4):e0250282. doi: 10.1371/journal.pone.0250282. eCollection 2021. PLoS One. 2021. PMID: 33901204 Free PMC article. - Editorial: Targeting antigen processing and presentation in autoimmune and autoinflammatory disorders.
Leone P, Racanelli V. Leone P, et al. Front Immunol. 2022 Oct 13;13:1055152. doi: 10.3389/fimmu.2022.1055152. eCollection 2022. Front Immunol. 2022. PMID: 36311705 Free PMC article. No abstract available. - VariantSpark: Cloud-based machine learning for association study of complex phenotype and large-scale genomic data.
Bayat A, Szul P, O'Brien AR, Dunne R, Hosking B, Jain Y, Hosking C, Luo OJ, Twine N, Bauer DC. Bayat A, et al. Gigascience. 2020 Aug 1;9(8):giaa077. doi: 10.1093/gigascience/giaa077. Gigascience. 2020. PMID: 32761098 Free PMC article. - New insights into IL-17/IL-23 signaling in ankylosing spondylitis (Review).
Chisălău BA, Crînguș LI, Vreju FA, Pârvănescu CD, Firulescu SC, Dinescu ȘC, Ciobanu DA, Tica AA, Sandu RE, Siloși I, Boldeanu MV, Poenariu IS, Ungureanu AM, Boldeanu L, Bărbulescu AL. Chisălău BA, et al. Exp Ther Med. 2020 Oct;20(4):3493-3497. doi: 10.3892/etm.2020.8981. Epub 2020 Jul 9. Exp Ther Med. 2020. PMID: 32905121 Free PMC article. Review. - New developments in our understanding of ankylosing spondylitis pathogenesis.
Voruganti A, Bowness P. Voruganti A, et al. Immunology. 2020 Oct;161(2):94-102. doi: 10.1111/imm.13242. Epub 2020 Aug 17. Immunology. 2020. PMID: 32696457 Free PMC article. Review.
References
- Pedersen OB, et al. Ankylosing spondylitis in Danish and Norwegian twins: occurrence and the relative importance of genetic vs. environmental effectors in disease causation. Scand. J. Rheumatol. 2008;37:120–126. - PubMed
- Brown MA, et al. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum. 1997;40:1823–1828. - PubMed
- Calin A, Marder A, Becks E, Burns T. Genetic differences between B27 positive patients with ankylosing spondylitis and B27 positive healthy controls. Arthritis Rheum. 1983;26:1460–1464. - PubMed
- van der Linden S, Valkenburg H, Cats A. The risk of developing ankylosing spondylitis in HLA-B27 positive individuals: a family and population study. Br. J. Rheumatol. 1983;22:18–19. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- 083948/Z/07/Z/WT_/Wellcome Trust/United Kingdom
- CAPMC/ CIHR/Canada
- G0800582/MRC_/Medical Research Council/United Kingdom
- M01 RR000425/RR/NCRR NIH HHS/United States
- G0000934/MRC_/Medical Research Council/United Kingdom
- ZIA AR041153-07/ImNIH/Intramural NIH HHS/United States
- 18797/ARC_/Arthritis Research UK/United Kingdom
- G19/2/MRC_/Medical Research Council/United Kingdom
- R01-AR046208/AR/NIAMS NIH HHS/United States
- 068545/Z/02/WT_/Wellcome Trust/United Kingdom
- UL1RR024188/RR/NCRR NIH HHS/United States
- PDA/02/06/016/DH_/Department of Health/United Kingdom
- 19356/VAC_/Versus Arthritis/United Kingdom
- 076113/WT_/Wellcome Trust/United Kingdom
- R01 AR046208/AR/NIAMS NIH HHS/United States
- G0600705/MRC_/Medical Research Council/United Kingdom
- 090532/WT_/Wellcome Trust/United Kingdom
- 19536/ARC_/Arthritis Research UK/United Kingdom
- G0901310/MRC_/Medical Research Council/United Kingdom
- 092809/WT_/Wellcome Trust/United Kingdom
- ZIA AR041153/ImNIH/Intramural NIH HHS/United States
- MO1-RR00425/RR/NCRR NIH HHS/United States
- WT_/Wellcome Trust/United Kingdom
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous