Pseudomonas aeruginosa: resistance to the max - PubMed (original) (raw)
Pseudomonas aeruginosa: resistance to the max
Keith Poole. Front Microbiol. 2011.
Abstract
Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us?
Keywords: Pseudomonas aeruginosa; antimicrobial; biofilm; efflux; hypermutability; resistance; β-lactamase.
Similar articles
- Pseudomonas aeruginosa - a phenomenon of bacterial resistance.
Strateva T, Yordanov D. Strateva T, et al. J Med Microbiol. 2009 Sep;58(Pt 9):1133-1148. doi: 10.1099/jmm.0.009142-0. Epub 2009 Jun 15. J Med Microbiol. 2009. PMID: 19528173 Review. - Hypermutator Pseudomonas aeruginosa Exploits Multiple Genetic Pathways To Develop Multidrug Resistance during Long-Term Infections in the Airways of Cystic Fibrosis Patients.
Colque CA, Albarracín Orio AG, Feliziani S, Marvig RL, Tobares AR, Johansen HK, Molin S, Smania AM. Colque CA, et al. Antimicrob Agents Chemother. 2020 Apr 21;64(5):e02142-19. doi: 10.1128/AAC.02142-19. Print 2020 Apr 21. Antimicrob Agents Chemother. 2020. PMID: 32071060 Free PMC article. - [MULTIRESISTANT BACTERIA].
Bedenić B, Sardelić S, Ladavac M. Bedenić B, et al. Acta Med Croatica. 2015 Sep;69(3):211-6. Acta Med Croatica. 2015. PMID: 29077379 Review. Croatian. - Mutational and acquired carbapenem resistance mechanisms in multidrug resistant Pseudomonas aeruginosa clinical isolates from Recife, Brazil.
Cavalcanti FL, Mirones CR, Paucar ER, Montes LÁ, Leal-Balbino TC, Morais MM, Martínez-Martínez L, Ocampo-Sosa AA. Cavalcanti FL, et al. Mem Inst Oswaldo Cruz. 2015 Dec;110(8):1003-9. doi: 10.1590/0074-02760150233. Epub 2015 Dec 15. Mem Inst Oswaldo Cruz. 2015. PMID: 26676375 Free PMC article.
Cited by
- Integrated whole-genome screening for Pseudomonas aeruginosa virulence genes using multiple disease models reveals that pathogenicity is host specific.
Dubern JF, Cigana C, De Simone M, Lazenby J, Juhas M, Schwager S, Bianconi I, Döring G, Eberl L, Williams P, Bragonzi A, Cámara M. Dubern JF, et al. Environ Microbiol. 2015 Nov;17(11):4379-93. doi: 10.1111/1462-2920.12863. Epub 2015 May 14. Environ Microbiol. 2015. PMID: 25845292 Free PMC article. - The Bacteriophages Therapy of Interdigital Pyoderma Complicated by Cellulitis with Antibiotic-Resistant Pseudomonas aeruginosa in a Dog-Case Report.
Grecu M, Henea ME, Rîmbu CM, Simion C, Şindilar EV, Solcan G. Grecu M, et al. Vet Sci. 2023 Nov 5;10(11):642. doi: 10.3390/vetsci10110642. Vet Sci. 2023. PMID: 37999465 Free PMC article. - Resistance suppression by high-intensity, short-duration aminoglycoside exposure against hypermutable and non-hypermutable Pseudomonas aeruginosa.
Rees VE, Bulitta JB, Oliver A, Tsuji BT, Rayner CR, Nation RL, Landersdorfer CB. Rees VE, et al. J Antimicrob Chemother. 2016 Nov;71(11):3157-3167. doi: 10.1093/jac/dkw297. Epub 2016 Aug 11. J Antimicrob Chemother. 2016. PMID: 27521357 Free PMC article. - Aminoglycoside resistance of Pseudomonas aeruginosa in cystic fibrosis results from convergent evolution in the mexZ gene.
Prickett MH, Hauser AR, McColley SA, Cullina J, Potter E, Powers C, Jain M. Prickett MH, et al. Thorax. 2017 Jan;72(1):40-47. doi: 10.1136/thoraxjnl-2015-208027. Epub 2016 Jun 20. Thorax. 2017. PMID: 27325751 Free PMC article. - MexAB-OprM Efflux Pump of Pseudomonas aeruginosa Offers Resistance to Carvacrol: A Herbal Antimicrobial Agent.
Pesingi PV, Singh BR, Pesingi PK, Bhardwaj M, Singh SV, Kumawat M, Sinha DK, Gandham RK. Pesingi PV, et al. Front Microbiol. 2019 Nov 19;10:2664. doi: 10.3389/fmicb.2019.02664. eCollection 2019. Front Microbiol. 2019. PMID: 31803171 Free PMC article.
References
- Abraham N., Kwon D. H. (2009). A single amino acid substitution in PmrB is associated with polymyxin B resistance in clinical isolate of Pseudomonas aeruginosa. FEMS Microbiol. Lett. 298, 249–254 - PubMed
- al Naiemi N., Duim B., Bart A. (2006). A CTX-M extended-spectrum β-lactamase in Pseudomonas aeruginosa and Stenotrophomonas maltophilia. J. Med. Microbiol. 55, 1607–1608 - PubMed
- Arora S., Bal M. (2005). AmpC β-lactamase producing bacterial isolates from Kolkata hospital. Indian J. Med. Res. 122, 224–233 - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources