CRF receptor regulation and sensitization of ACTH responses to acute ether stress during chronic intermittent immobilization stress - PubMed (original) (raw)

CRF receptor regulation and sensitization of ACTH responses to acute ether stress during chronic intermittent immobilization stress

R L Hauger et al. Brain Res. 1990.

Abstract

The relationship between corticotropin releasing factor (CRF) receptors and pituitary-adrenal responses was determined after chronic intermittent immobilization (2.5 h restraint/day) to examine the hypothesis that CRF receptor regulation is involved in the sensitization of the pituitary-adrenocortical axis to novel stimuli during repeated stress. Following the 11-fold stimulation of ACTH secretion on the first day of restraint stress, a desensitization of the pituitary ACTH response to immobilization was observed over the next 9 days of chronic intermittent stress. In contrast, the magnitude of the restraint-stimulated release of corticosterone on the 2nd and 4th day of stress was similar to the day 1 adrenocortical response. Furthermore, the significant stimulation of corticosterone secretion by restraint stress persisted to the 16th day of immobilization (P less than 0.001), even though significant increases in plasma ACTH were absent. The concentration of anterior pituitary CRF receptors was unchanged after a single period of restraint; however, a down-regulation of anterior pituitary CRF receptors was observed following 4 days (P less than 0.001) and 10 days (P less than 0.005) of repeated immobilization stress. CRF receptors in the olfactory bulb were unchanged following acute or chronic restraint stress, consistent with previous observations that brain CRF receptors are neither changed by adrenalectomy, glucocorticoid administration, nor 18-48 h of continuous restraint stress. The concentration of CRF receptors in the intermediate lobe of the pituitary also was not influenced by immobilization stress.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances