MicroRNAs in thyroid cancer - PubMed (original) (raw)
Review
. 2011 Nov;96(11):3326-36.
doi: 10.1210/jc.2011-1004. Epub 2011 Aug 24.
Affiliations
- PMID: 21865360
- PMCID: PMC3410255
- DOI: 10.1210/jc.2011-1004
Review
MicroRNAs in thyroid cancer
Albert de la Chapelle et al. J Clin Endocrinol Metab. 2011 Nov.
Abstract
Context: Traditionally, factors predisposing to diseases are either genetic ("nature") or environmental, also known as lifestyle-related ("nurture"). Papillary thyroid cancer is an example of a disease where the respective roles of these factors are surprisingly unclear.
Evidence acquisition: Original articles and reviews summarizing our current understanding of the role of microRNA in thyroid tumorigenesis are reviewed and evaluated.
Conclusion: The genetic predisposition to papillary thyroid cancer appears to consist of a variety of gene mutations that are mostly either of low penetrance and common or of high penetrance but rare. Moreover, they likely interact with each other and with environmental factors. The culpable genes may not be of the traditional, protein-coding type. A limited number of noncoding candidate genes have indeed been described, and we propose here that the failure to find mutations in traditional protein-coding genes is not coincidental. Instead, a more likely hypothesis is that changes in the expression of multiple regulatory RNA genes, e.g. microRNAs, may be a major mechanism. Our review of the literature strongly supports this notion in that a polymorphism in one microRNAs (miR-146a) predisposes to thyroid carcinoma, whereas numerous other microRNAs are involved in signaling (mainly PTEN/PI3K/AKT and T3/THRB) that is central to thyroid carcinogenesis.
Figures
Fig. 1.
Regulation of PTEN/PI3K/AKT pathway by microRNAs. Arrows represent positive (green) or negative (red) regulation of the genes.
Fig. 2.
Target genes of microRNA deregulated in PTC tumors. The top seven microRNA up-regulated in PTC contain binding sites for the same one gene, namely THRB, as predicted by TargetScan software (P = 0.0000002). The size of every sector of the circle graph reflects the number of genes predicted to be regulated by a given microRNA. [Reproduced from K. Jazdzewski et al.: Thyroid hormone receptor β (THRB) is a major target gene for microRNAs deregulated in papillary thyroid carcinoma (PTC). J Clin Endocrinol Metab 96:E546–E553, 2011 (105), with permission. © The Endocrine Society.]
Similar articles
- Thyroid hormone receptor beta (THRB) is a major target gene for microRNAs deregulated in papillary thyroid carcinoma (PTC).
Jazdzewski K, Boguslawska J, Jendrzejewski J, Liyanarachchi S, Pachucki J, Wardyn KA, Nauman A, de la Chapelle A. Jazdzewski K, et al. J Clin Endocrinol Metab. 2011 Mar;96(3):E546-53. doi: 10.1210/jc.2010-1594. Epub 2010 Dec 15. J Clin Endocrinol Metab. 2011. PMID: 21159845 Free PMC article. - MicroRNA-146a targets PRKCE to modulate papillary thyroid tumor development.
Zhang X, Li D, Li M, Ye M, Ding L, Cai H, Fu D, Lv Z. Zhang X, et al. Int J Cancer. 2014 Jan 15;134(2):257-67. doi: 10.1002/ijc.28141. Epub 2013 Sep 18. Int J Cancer. 2014. PMID: 23457043 - Family of microRNA-146 Regulates RARβ in Papillary Thyroid Carcinoma.
Czajka AA, Wójcicka A, Kubiak A, Kotlarek M, Bakuła-Zalewska E, Koperski Ł, Wiechno W, Jażdżewski K. Czajka AA, et al. PLoS One. 2016 Mar 24;11(3):e0151968. doi: 10.1371/journal.pone.0151968. eCollection 2016. PLoS One. 2016. PMID: 27011326 Free PMC article. - MicroRNA-146b: A Novel Biomarker and Therapeutic Target for Human Papillary Thyroid Cancer.
Chou CK, Liu RT, Kang HY. Chou CK, et al. Int J Mol Sci. 2017 Mar 15;18(3):636. doi: 10.3390/ijms18030636. Int J Mol Sci. 2017. PMID: 28294980 Free PMC article. Review. - Clinical pathological impacts of microRNAs in papillary thyroid carcinoma: A crucial review.
Chruścik A, Lam AK. Chruścik A, et al. Exp Mol Pathol. 2015 Dec;99(3):393-8. doi: 10.1016/j.yexmp.2015.08.013. Epub 2015 Aug 29. Exp Mol Pathol. 2015. PMID: 26321247 Review.
Cited by
- miRNA expression and function in thyroid carcinomas: a comparative and critical analysis and a model for other cancers.
Saiselet M, Pita JM, Augenlicht A, Dom G, Tarabichi M, Fimereli D, Dumont JE, Detours V, Maenhaut C. Saiselet M, et al. Oncotarget. 2016 Aug 9;7(32):52475-52492. doi: 10.18632/oncotarget.9655. Oncotarget. 2016. PMID: 27248468 Free PMC article. Review. - miR-222 expression is correlated with the ATA risk stratifications in papillary thyroid carcinomas.
Xiang D, Tian B, Yang T, Li Z. Xiang D, et al. Medicine (Baltimore). 2019 Jun;98(25):e16050. doi: 10.1097/MD.0000000000016050. Medicine (Baltimore). 2019. PMID: 31232941 Free PMC article. - Deregulation of miR-146a expression in a mouse model of pancreatic cancer affecting EGFR signaling.
Ali S, Ahmad A, Aboukameel A, Ahmed A, Bao B, Banerjee S, Philip PA, Sarkar FH. Ali S, et al. Cancer Lett. 2014 Aug 28;351(1):134-42. doi: 10.1016/j.canlet.2014.05.013. Epub 2014 May 16. Cancer Lett. 2014. PMID: 24839931 Free PMC article. - Analysis options for high-throughput sequencing in miRNA expression profiling.
Stokowy T, Eszlinger M, Świerniak M, Fujarewicz K, Jarząb B, Paschke R, Krohn K. Stokowy T, et al. BMC Res Notes. 2014 Mar 13;7:144. doi: 10.1186/1756-0500-7-144. BMC Res Notes. 2014. PMID: 24625073 Free PMC article. - Integrated microRNA-mRNA analyses of distinct expression profiles in follicular thyroid tumors.
Chi J, Zheng X, Gao M, Zhao J, Li D, Li J, Dong L, Ruan X. Chi J, et al. Oncol Lett. 2017 Dec;14(6):7153-7160. doi: 10.3892/ol.2017.7146. Epub 2017 Oct 6. Oncol Lett. 2017. PMID: 29344146 Free PMC article.
References
- Adeniran AJ, Zhu Z, Gandhi M, Steward DL, Fidler JP, Giordano TJ, Biddinger PW, Nikiforov YE. 2006. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol 30:216–222 - PubMed
- Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW, 2nd, Tallini G, Kroll TG, Nikiforov YE. 2003. RAS point mutations and PAX8-PPAR γ rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 88:2318–2326 - PubMed
- Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH. 1994. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst 86:1600–1608 - PubMed
- Dong C, Hemminki K. 2001. Modification of cancer risks in offspring by sibling and parental cancers from 2,112,616 nuclear families. Int J Cancer 92:144–150 - PubMed
- Risch N. 2001. The genetic epidemiology of cancer: interpreting family and twin studies and their implications for molecular genetic approaches. Cancer Epidemiol Biomarkers Prev 10:733–741 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials