Mitochondrial ATP synthase: architecture, function and pathology - PubMed (original) (raw)
Review
Mitochondrial ATP synthase: architecture, function and pathology
An I Jonckheere et al. J Inherit Metab Dis. 2012 Mar.
Abstract
Human mitochondrial (mt) ATP synthase, or complex V consists of two functional domains: F(1), situated in the mitochondrial matrix, and F(o), located in the inner mitochondrial membrane. Complex V uses the energy created by the proton electrochemical gradient to phosphorylate ADP to ATP. This review covers the architecture, function and assembly of complex V. The role of complex V di-and oligomerization and its relation with mitochondrial morphology is discussed. Finally, pathology related to complex V deficiency and current therapeutic strategies are highlighted. Despite the huge progress in this research field over the past decades, questions remain to be answered regarding the structure of subunits, the function of the rotary nanomotor at a molecular level, and the human complex V assembly process. The elucidation of more nuclear genetic defects will guide physio(patho)logical studies, paving the way for future therapeutic interventions.
Figures
Fig. 1
Human mitochondrial ATP synthase, or complex V, consists of two functional domains, F1 and Fo. F1 comprises 5 different subunits (three α, three β, and one γ, δ and ε) and is situated in the mitochondrial matrix. Fo contains subunits c, a, b, d, F6, OSCP and the accessory subunits e, f, g and A6L. F1 subunits γ, δ and ε constitute the central stalk of complex V. Subunits b, d, F6 and OSCP form the peripheral stalk. Protons pass from the intermembrane space to the matrix through Fo, which transfers the energy created by the proton electrochemical gradient to F1, where ADP is phosphorylated to ATP. One β subunit is taken out to visualize the central stalk
Fig. 2
Complex V assembly and dimerization. The current working model is based on assembly of the c-ring followed by binding of F1, the stator arm, and finally of subunits a and A6L. Two ATP synthase monomers dimerize via the Fo sector, where subunits a, e, g, b and A6L stabilize the monomer-monomer interface
Similar articles
- The spatio-temporal organization of mitochondrial F1FO ATP synthase in cristae depends on its activity mode.
Salewskij K, Rieger B, Hager F, Arroum T, Duwe P, Villalta J, Colgiati S, Richter CP, Psathaki OE, Enriquez JA, Dellmann T, Busch KB. Salewskij K, et al. Biochim Biophys Acta Bioenerg. 2020 Jan 1;1861(1):148091. doi: 10.1016/j.bbabio.2019.148091. Epub 2019 Nov 27. Biochim Biophys Acta Bioenerg. 2020. PMID: 31669489 - In situ structure and rotary states of mitochondrial ATP synthase in whole Polytomella cells.
Dietrich L, Agip AA, Kunz C, Schwarz A, Kühlbrandt W. Dietrich L, et al. Science. 2024 Sep 6;385(6713):1086-1090. doi: 10.1126/science.adp4640. Epub 2024 Sep 5. Science. 2024. PMID: 39236170 - Stepwise assembly of dimeric F(1)F(o)-ATP synthase in mitochondria involves the small F(o)-subunits k and i.
Wagner K, Perschil I, Fichter CD, van der Laan M. Wagner K, et al. Mol Biol Cell. 2010 May 1;21(9):1494-504. doi: 10.1091/mbc.e09-12-1023. Epub 2010 Mar 10. Mol Biol Cell. 2010. PMID: 20219971 Free PMC article. - Structures and interactions of proteins involved in the coupling function of the protonmotive F(o)F(1)-ATP synthase.
Gaballo A, Zanotti F, Papa S. Gaballo A, et al. Curr Protein Pept Sci. 2002 Aug;3(4):451-60. doi: 10.2174/1389203023380558. Curr Protein Pept Sci. 2002. PMID: 12370007 Review. - IF(1): setting the pace of the F(1)F(o)-ATP synthase.
Campanella M, Parker N, Tan CH, Hall AM, Duchen MR. Campanella M, et al. Trends Biochem Sci. 2009 Jul;34(7):343-50. doi: 10.1016/j.tibs.2009.03.006. Epub 2009 Jun 24. Trends Biochem Sci. 2009. PMID: 19559621 Review.
Cited by
- Mitochondrial Permeability Transition: A Pore Intertwines Brain Aging and Alzheimer's Disease.
Jia K, Du H. Jia K, et al. Cells. 2021 Mar 15;10(3):649. doi: 10.3390/cells10030649. Cells. 2021. PMID: 33804048 Free PMC article. Review. - The Polyadenosine RNA-binding Protein, Zinc Finger Cys3His Protein 14 (ZC3H14), Regulates the Pre-mRNA Processing of a Key ATP Synthase Subunit mRNA.
Wigington CP, Morris KJ, Newman LE, Corbett AH. Wigington CP, et al. J Biol Chem. 2016 Oct 21;291(43):22442-22459. doi: 10.1074/jbc.M116.754069. Epub 2016 Aug 25. J Biol Chem. 2016. PMID: 27563065 Free PMC article. - Congenital Hypermetabolism and Uncoupled Oxidative Phosphorylation.
Ganetzky RD, Markhard AL, Yee I, Clever S, Cahill A, Shah H, Grabarek Z, To TL, Mootha VK. Ganetzky RD, et al. N Engl J Med. 2022 Oct 13;387(15):1395-1403. doi: 10.1056/NEJMoa2202949. N Engl J Med. 2022. PMID: 36239646 Free PMC article. - A novel approach to measure complex V ATP hydrolysis in frozen cell lysates and tissue homogenates.
Fernandez-Del-Rio L, Benincá C, Villalobos F, Shu C, Stiles L, Liesa M, Divakaruni AS, Acin-Perez R, Shirihai OS. Fernandez-Del-Rio L, et al. Life Sci Alliance. 2023 Mar 14;6(4):e202201628. doi: 10.26508/lsa.202201628. Print 2023 Apr. Life Sci Alliance. 2023. PMID: 36918278 Free PMC article. - Identification of cryptic subunits from an apicomplexan ATP synthase.
Huet D, Rajendran E, van Dooren GG, Lourido S. Huet D, et al. Elife. 2018 Sep 11;7:e38097. doi: 10.7554/eLife.38097. Elife. 2018. PMID: 30204085 Free PMC article.
References
- Abu-Amero KK, Bosley TM. Mitochondrial abnormalities in patients with LHON-like optic neuropathies. Invest Ophthalmol Vis Sci. 2006;47:4211–4220. - PubMed
- Ackerman SH. Atp11p and Atp12p are chaperones for F(1)-ATPase biogenesis in mitochondria. Biochim Biophys Acta. 2002;1555:101–105. - PubMed
- Adachi K, Oiwa K, Nishizaka T, et al. Coupling of rotation and catalysis in F(1)-ATPase revealed by single-molecule imaging and manipulation. Cell. 2007;130:309–321. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous