Towards an optimal design of target for tsetse control: comparisons of novel targets for the control of Palpalis group tsetse in West Africa - PubMed (original) (raw)
Towards an optimal design of target for tsetse control: comparisons of novel targets for the control of Palpalis group tsetse in West Africa
Jean Baptiste Rayaisse et al. PLoS Negl Trop Dis. 2011 Sep.
Abstract
Background: Tsetse flies of the Palpalis group are the main vectors of sleeping sickness in Africa. Insecticide impregnated targets are one of the most effective tools for control. However, the cost of these devices still represents a constraint to their wider use. The objective was therefore to improve the cost effectiveness of currently used devices.
Methodology/principal findings: Experiments were performed on three tsetse species, namely Glossina palpalis gambiensis and G. tachinoides in Burkina Faso and G. p. palpalis in Côte d'Ivoire. The 1 × 1 m(2) black blue black target commonly used in W. Africa was used as the standard, and effects of changes in target size, shape, and the use of netting instead of black cloth were measured. Regarding overall target shape, we observed that horizontal targets (i.e. wider than they were high) killed 1.6-5x more G. p. gambiensis and G. tachinoides than vertical ones (i.e. higher than they were wide) (P < 0.001). For the three tsetse species including G. p. palpalis, catches were highly correlated with the size of the target. However, beyond the size of 0.75 m, there was no increase in catches. Replacing the black cloth of the target by netting was the most cost efficient for all three species.
Conclusion/significance: Reducing the size of the current 1*1 m black-blue-black target to horizontal designs of around 50 cm and replacing black cloth by netting will improve cost effectiveness six-fold for both G. p. gambiensis and G. tachinoides. Studying the visual responses of tsetse to different designs of target has allowed us to design more cost-effective devices for the effective control of sleeping sickness and animal trypanosomiasis in Africa.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
Figure 1. Example of a target design used for comparison.
A 0.75 m wide×0.50 m high net-blue-net target (37.5 cm×50 cm blue surrounded by 2 pieces of net of 18.75 cm×50 cm each) inside an electric grid mounted on a fly collection tray.
Figure 2. The standard 1 m×1 m Black Blue Black e-target (treatment A) set up on a tray.
Similar articles
- Prospects for the development of odour baits to control the tsetse flies Glossina tachinoides and G. palpalis s.l.
Rayaisse JB, Tirados I, Kaba D, Dewhirst SY, Logan JG, Diarrassouba A, Salou E, Omolo MO, Solano P, Lehane MJ, Pickett JA, Vale GA, Torr SJ, Esterhuizen J. Rayaisse JB, et al. PLoS Negl Trop Dis. 2010 Mar 16;4(3):e632. doi: 10.1371/journal.pntd.0000632. PLoS Negl Trop Dis. 2010. PMID: 20300513 Free PMC article. - Variations in attack behaviours between Glossina palpalis gambiensis and G. tachinoides in a gallery forest suggest host specificity.
Salou E, Rayaisse JB, Kaba D, Djohan V, Yoni W, Barry I, Dofini F, Bouyer J, Solano P. Salou E, et al. Med Vet Entomol. 2016 Dec;30(4):403-409. doi: 10.1111/mve.12187. Epub 2016 Aug 11. Med Vet Entomol. 2016. PMID: 27513602 - Improving the cost-effectiveness of visual devices for the control of riverine tsetse flies, the major vectors of human African trypanosomiasis.
Esterhuizen J, Rayaisse JB, Tirados I, Mpiana S, Solano P, Vale GA, Lehane MJ, Torr SJ. Esterhuizen J, et al. PLoS Negl Trop Dis. 2011 Aug;5(8):e1257. doi: 10.1371/journal.pntd.0001257. Epub 2011 Aug 2. PLoS Negl Trop Dis. 2011. PMID: 21829743 Free PMC article. - Standardizing visual control devices for tsetse flies: West African species Glossina tachinoides, G. palpalis gambiensis and G. morsitans submorsitans.
Rayaisse JB, Kröber T, McMullin A, Solano P, Mihok S, Guerin PM. Rayaisse JB, et al. PLoS Negl Trop Dis. 2012;6(2):e1491. doi: 10.1371/journal.pntd.0001491. Epub 2012 Feb 14. PLoS Negl Trop Dis. 2012. PMID: 22348159 Free PMC article. - How do tsetse recognise their hosts? The role of shape in the responses of tsetse (Glossina fuscipes and G. palpalis) to artificial hosts.
Tirados I, Esterhuizen J, Rayaisse JB, Diarrassouba A, Kaba D, Mpiana S, Vale GA, Solano P, Lehane MJ, Torr SJ. Tirados I, et al. PLoS Negl Trop Dis. 2011 Aug;5(8):e1226. doi: 10.1371/journal.pntd.0001226. Epub 2011 Aug 2. PLoS Negl Trop Dis. 2011. PMID: 21829734 Free PMC article.
Cited by
- Spiroplasma endosymbiont reduction of host lipid synthesis and Stomoxyn-like peptide contribute to trypanosome resistance in the tsetse fly Glossina fuscipes.
Awuoche E, Smallenberger G, Bruzzese D, Orfano A, Weiss BL, Aksoy S. Awuoche E, et al. bioRxiv [Preprint]. 2024 Oct 24:2024.10.24.620045. doi: 10.1101/2024.10.24.620045. bioRxiv. 2024. PMID: 39484388 Free PMC article. Preprint. - Description of a nanobody-based competitive immunoassay to detect tsetse fly exposure.
Caljon G, Hussain S, Vermeiren L, Van Den Abbeele J. Caljon G, et al. PLoS Negl Trop Dis. 2015 Feb 6;9(2):e0003456. doi: 10.1371/journal.pntd.0003456. eCollection 2015 Feb. PLoS Negl Trop Dis. 2015. PMID: 25658871 Free PMC article. - Evaluation of the influence of electric nets on the behaviour of oviposition site seeking Anopheles gambiae s.s.
Dugassa S, Lindh JM, Torr SJ, Lindsay SW, Fillinger U. Dugassa S, et al. Parasit Vectors. 2014 Jun 19;7:272. doi: 10.1186/1756-3305-7-272. Parasit Vectors. 2014. PMID: 24948354 Free PMC article. - Use of vector control to protect people from sleeping sickness in the focus of Bonon (Côte d'Ivoire).
Kaba D, Djohan V, Berté D, Ta BTD, Selby R, Kouadio KAM, Coulibaly B, Traoré G, Rayaisse JB, Fauret P, Jamonneau V, Lingue K, Solano P, Torr SJ, Courtin F. Kaba D, et al. PLoS Negl Trop Dis. 2021 Jun 28;15(6):e0009404. doi: 10.1371/journal.pntd.0009404. eCollection 2021 Jun. PLoS Negl Trop Dis. 2021. PMID: 34181651 Free PMC article. - Adding tsetse control to medical activities contributes to decreasing transmission of sleeping sickness in the Mandoul focus (Chad).
Mahamat MH, Peka M, Rayaisse JB, Rock KS, Toko MA, Darnas J, Brahim GM, Alkatib AB, Yoni W, Tirados I, Courtin F, Brand SPC, Nersy C, Alfaroukh IO, Torr SJ, Lehane MJ, Solano P. Mahamat MH, et al. PLoS Negl Trop Dis. 2017 Jul 27;11(7):e0005792. doi: 10.1371/journal.pntd.0005792. eCollection 2017 Jul. PLoS Negl Trop Dis. 2017. PMID: 28750007 Free PMC article.
References
- Kabayo JP. Aiming to eliminate tsetse from Africa. Trend in Parasitol. 2002;18:473–475. - PubMed
- Cuisance D, Politzar H. Study on the efficiency of barriers of screens and biconical traps impregnated with DDT, deltamethrin and dieldrin against Glossina palpalis gambiensis and Glossina tachinoides. Rev Elev Med Vet Pays Trop. 1983;36:159–168. - PubMed
- Takken W, Oladunmade MA, Dengwat M, Feldman HU, et al. The eradication of Glossina-palpalis palpalis (Robineau- Desvoidy) (Diptera, Glossinidae) using traps, insecticide- impregnated targets and the sterile insect technique in central Nigeria. Bull Ent Res. 1986;76:275–286.
- Vale GA, Lovemore DA, et al. Odour-baited targets to control tsetse flies, Glossina spp. (Diptera, Glossinidae), in Zimbabwe. Bull Ent Res. 1988;78:31–49.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources