Developmental origins and impact of BCR-ABL1 fusion and IKZF1 deletions in monozygotic twins with Ph+ acute lymphoblastic leukemia - PubMed (original) (raw)
Case Reports
Developmental origins and impact of BCR-ABL1 fusion and IKZF1 deletions in monozygotic twins with Ph+ acute lymphoblastic leukemia
Giovanni Cazzaniga et al. Blood. 2011.
Abstract
The timing and developmental sequence of events for BCR-ABL1(+) acute lymphoblastic leukemia (ALL), usually associated with IKAROS (IKZF1) deletions, are unknown. We assessed the status of BCR-ABL1 and IKZF1 genes in 2 pairs of monozygotic twins, one pair concordant, the other discordant for Philadelphia chromosome positive (Ph(+)) ALL. The twin pair concordant for ALL shared identical BCR-ABL1 genomic sequence indicative of monoclonal, in utero origin. One twin had IKZF1 deletion and died after transplantation. The other twin had hyperdiploidy, no IKZF1 deletion, and is still in remission 8 years after transplantation. In the twin pair discordant for ALL, neonatal blood spots from both twins harbored the same clonotypic BCR-ABL1 sequence. Low level BCR-ABL1(+) cells were present in the healthy co-twin but lacked the IKZF1 deletion present in the other twin's leukemic cells. The twin with ALL relapsed and died after transplantation. The co-twin remains healthy and leukemia free. These data show that in childhood Ph(+) ALL, BCR-ABL1 gene fusion can be a prenatal and possibly initiating genetic event. In the absence of additional, secondary changes, the leukemic clone remains clinically silent. IKZF1 is a secondary and probable postnatal mutation in these cases, and as a recurrent but alternative copy number change is associated with poor prognosis.
Figures
Figure 1
Sequence of the BCR-ABL1 rearrangements from twins 1A and 2A at diagnosis. The chromatogram and NCBI nucleotide blasts analysis of the BCR-ABL1 breakpoint DNA sequence with BCR intron 1 (NT_011520, black) and ABL1 intron 1 (NT_035014, red) sequences are shown for twins 1A (A) and 2A (B).
Figure 2
PCR amplification of the genomic BCR-ABL1 rearrangements from twins. (A) Genomic BCR-ABL1 rearrangements from twins 1A and 1B at diagnosis; lanes: 1, marker; 2, diagnosis twin 1A; 3, diagnosis twin 1B; 4 and 5, negative controls; 6, no DNA control. (B) Genomic BCR-ABL1 rearrangements from twin 2A at diagnosis and relapse; lanes: 1, marker; 2, diagnosis twin 2A; 3, relapse twin 2A; 4, no DNA control. (C) Genomic BCR-ABL1 rearrangements from twin 2A and healthy twin 2B (Guthrie specimens); lanes: 1, marker; 2, Guthrie card DNA twin 2A; 3, Guthrie card DNA twin 2B; 4, no DNA control.
Figure 3
Immunostained for CD19AMCA, leukemic cell nucleus stained with DAPI. Probes used include Vysis BCR/ABL1 ES probe (BCR/chromosome 22 = green, ABL1/chromosome 9 = red) Ikarosbiotin-Cy5 = pink. F = BCR-ABL1 fusion.
Figure 4
Copy number analysis of the IKZF1 locus in DNA at diagnosis with the use of CNAG 3.0. The blue lines indicate the mean CNA of 5 contiguous SNPs. The numbers 0, 2, and 4 refer to the genomic copy number. (A-C) The bold arrows point to the IKZF1 locus. (C) The fine dotted arrows indicate the genomic breakpoints (base pair location, NCBI35/Hg17) around the IKZF1 gene. (A) Twin 1A, (B) twin 1B, (C) twin 2A, and (D) twin 1A, IKZF1 sequence.
Similar articles
- IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report.
Martinelli G, Iacobucci I, Storlazzi CT, Vignetti M, Paoloni F, Cilloni D, Soverini S, Vitale A, Chiaretti S, Cimino G, Papayannidis C, Paolini S, Elia L, Fazi P, Meloni G, Amadori S, Saglio G, Pane F, Baccarani M, Foà R. Martinelli G, et al. J Clin Oncol. 2009 Nov 1;27(31):5202-7. doi: 10.1200/JCO.2008.21.6408. Epub 2009 Sep 21. J Clin Oncol. 2009. PMID: 19770381 - Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL.
van der Veer A, Waanders E, Pieters R, Willemse ME, Van Reijmersdal SV, Russell LJ, Harrison CJ, Evans WE, van der Velden VH, Hoogerbrugge PM, Van Leeuwen F, Escherich G, Horstmann MA, Mohammadi Khankahdani L, Rizopoulos D, De Groot-Kruseman HA, Sonneveld E, Kuiper RP, Den Boer ML. van der Veer A, et al. Blood. 2013 Oct 10;122(15):2622-9. doi: 10.1182/blood-2012-10-462358. Epub 2013 Aug 23. Blood. 2013. PMID: 23974192 Free PMC article. - IKZF1 status as a prognostic feature in BCR-ABL1-positive childhood ALL.
van der Veer A, Zaliova M, Mottadelli F, De Lorenzo P, Te Kronnie G, Harrison CJ, Cavé H, Trka J, Saha V, Schrappe M, Pieters R, Biondi A, Valsecchi MG, Stanulla M, den Boer ML, Cazzaniga G. van der Veer A, et al. Blood. 2014 Mar 13;123(11):1691-8. doi: 10.1182/blood-2013-06-509794. Epub 2013 Dec 23. Blood. 2014. PMID: 24366361 - Philadelphia Chromosome-like Acute Lymphoblastic Leukemia.
Pui CH, Roberts KG, Yang JJ, Mullighan CG. Pui CH, et al. Clin Lymphoma Myeloma Leuk. 2017 Aug;17(8):464-470. doi: 10.1016/j.clml.2017.03.299. Clin Lymphoma Myeloma Leuk. 2017. PMID: 28842136 Free PMC article. Review. - Genomic Analyses of Pediatric Acute Lymphoblastic Leukemia Ph+ and Ph-Like-Recent Progress in Treatment.
Kaczmarska A, Śliwa P, Zawitkowska J, Lejman M. Kaczmarska A, et al. Int J Mol Sci. 2021 Jun 15;22(12):6411. doi: 10.3390/ijms22126411. Int J Mol Sci. 2021. PMID: 34203891 Free PMC article. Review.
Cited by
- The dark side of stemness - the role of hematopoietic stem cells in development of blood malignancies.
Filipek-Gorzała J, Kwiecińska P, Szade A, Szade K. Filipek-Gorzała J, et al. Front Oncol. 2024 Feb 19;14:1308709. doi: 10.3389/fonc.2024.1308709. eCollection 2024. Front Oncol. 2024. PMID: 38440231 Free PMC article. Review. - In Utero Origins of Acute Leukemia in Children.
de Smith AJ, Spector LG. de Smith AJ, et al. Biomedicines. 2024 Jan 19;12(1):236. doi: 10.3390/biomedicines12010236. Biomedicines. 2024. PMID: 38275407 Free PMC article. Review. - Stem cell mutations, associated cancer risk, and consequences for regenerative medicine.
Derks LLM, van Boxtel R. Derks LLM, et al. Cell Stem Cell. 2023 Nov 2;30(11):1421-1433. doi: 10.1016/j.stem.2023.09.008. Epub 2023 Oct 12. Cell Stem Cell. 2023. PMID: 37832550 Free PMC article. Review. - Layered immunity and layered leukemogenicity: Developmentally restricted mechanisms of pediatric leukemia initiation.
Mendoza-Castrejon J, Magee JA. Mendoza-Castrejon J, et al. Immunol Rev. 2023 May;315(1):197-215. doi: 10.1111/imr.13180. Epub 2023 Jan 2. Immunol Rev. 2023. PMID: 36588481 Free PMC article. Review. - Childhood B-Cell Preleukemia Mouse Modeling.
Isidro-Hernández M, Alemán-Arteaga S, Casado-García A, Ruiz-Corzo B, Riesco S, Prieto-Matos P, Martínez-Cano J, Sánchez L, Cobaleda C, Sánchez-García I, Vicente-Dueñas C. Isidro-Hernández M, et al. Int J Mol Sci. 2022 Jul 8;23(14):7562. doi: 10.3390/ijms23147562. Int J Mol Sci. 2022. PMID: 35886910 Free PMC article. Review.
References
- Pui C-H, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med. 2004;350(15):1535–1548. - PubMed
- Greaves MF, Wiemels J. Origins of chromosome translocations in childhood leukaemia. Nature Rev Cancer. 2003;3(9):639–649. - PubMed
- Maia AT, Tussiwand R, Cazzaniga G, et al. Identification of preleukemic precursors of hyperdiploid acute lymphoblastic leukemia in cord blood. Genes Chromosomes Cancer. 2004;40(1):38–43. - PubMed
- Greaves MF, Maia AT, Wiemels JL, Ford AM. Leukemia in twins: lessons in natural history. Blood. 2003;102(7):2321–2333. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous