Redox sensing by proteins: oxidative modifications on cysteines and the consequent events - PubMed (original) (raw)
Review
. 2012 Apr 1;16(7):649-57.
doi: 10.1089/ars.2011.4313. Epub 2011 Dec 19.
Affiliations
- PMID: 21967570
- DOI: 10.1089/ars.2011.4313
Review
Redox sensing by proteins: oxidative modifications on cysteines and the consequent events
Ying Wang et al. Antioxid Redox Signal. 2012.
Abstract
Significance: Reactive oxygen species (ROS) are not only essential for the cell's normal functions, but also mediate many pathological effects. When cells experience oxidative stress, proteins are modulated by redox changes and ultimately generate novel signaling patterns. It remains elusive how proteins are modulated, rather than simply damaged, by ROS and then mediate the diverse cellular responses.
Recent advances: During the past decade, researchers frequently used "redox sensor" for proteins. However, the term "redox sensing" has not been clearly defined to date. Thiols of cysteines are subjected to oxidative modifications. The conformation changes and the various types of post-translational modifications (PTMs) may result from thiol oxidation of the same protein or other proteins. The molecular effects of redox sensing include changes in protein activity, abundance, localization, and interaction with other biomacromolecules.
Critical issues: We discuss the emerging concept of cysteine-based redox sensing, emphasizing "sensing redox changes by proteins using their thiols." ROS are an input, and the conformation changes and/or the other PTMs after thiol oxidation are the output of redox sensing. Among dozens of redox sensing proteins listed in this article, SENP3 and caspase-9, which have been investigated in our work, are given particular attention. We also introduce the notion of biphasic and compartment-specific redox sensing by nuclear factor kappa B.
Future directions: Understanding chemical modifications and conformational changes following protein redox sensing requires more studies in mass spectrometry and crystallography. Redox-indicative probes in live cells and tissues will help monitor redox-related biological and pathological progresses.
Similar articles
- Quantitative redox proteomics: the NOxICAT method.
Lindemann C, Leichert LI. Lindemann C, et al. Methods Mol Biol. 2012;893:387-403. doi: 10.1007/978-1-61779-885-6_24. Methods Mol Biol. 2012. PMID: 22665313 - Chemical Probes for Redox Signaling and Oxidative Stress.
Abo M, Weerapana E. Abo M, et al. Antioxid Redox Signal. 2019 Apr 1;30(10):1369-1386. doi: 10.1089/ars.2017.7408. Epub 2017 Dec 22. Antioxid Redox Signal. 2019. PMID: 29132214 Free PMC article. Review. - Cysteines under ROS attack in plants: a proteomics view.
Akter S, Huang J, Waszczak C, Jacques S, Gevaert K, Van Breusegem F, Messens J. Akter S, et al. J Exp Bot. 2015 May;66(10):2935-44. doi: 10.1093/jxb/erv044. Epub 2015 Mar 5. J Exp Bot. 2015. PMID: 25750420 Review. - Oxidative stress, thiols, and redox profiles.
Harris C, Hansen JM. Harris C, et al. Methods Mol Biol. 2012;889:325-46. doi: 10.1007/978-1-61779-867-2_21. Methods Mol Biol. 2012. PMID: 22669675 - Redox proteomics: from bench to bedside.
Ckless K. Ckless K. Adv Exp Med Biol. 2014;806:301-17. doi: 10.1007/978-3-319-06068-2_13. Adv Exp Med Biol. 2014. PMID: 24952188 Review.
Cited by
- Mitigative role of cysteamine against unilateral renal reperfusion injury in Wistar rats.
Alabi BA, Nku-Ekpang OA, Lawal SK, Iwalewa EO, Omobowale T, Ajike R, Lawal RA. Alabi BA, et al. Front Pharmacol. 2024 Sep 10;15:1456903. doi: 10.3389/fphar.2024.1456903. eCollection 2024. Front Pharmacol. 2024. PMID: 39372204 Free PMC article. - Glutathione Depletion Accelerates Cigarette Smoke-Induced Inflammation and Airspace Enlargement.
Gould NS, Min E, Huang J, Chu HW, Good J, Martin RJ, Day BJ. Gould NS, et al. Toxicol Sci. 2015 Oct;147(2):466-74. doi: 10.1093/toxsci/kfv143. Epub 2015 Jul 6. Toxicol Sci. 2015. PMID: 26149495 Free PMC article. - Annexin A2 heterotetramer: structure and function.
Bharadwaj A, Bydoun M, Holloway R, Waisman D. Bharadwaj A, et al. Int J Mol Sci. 2013 Mar 19;14(3):6259-305. doi: 10.3390/ijms14036259. Int J Mol Sci. 2013. PMID: 23519104 Free PMC article. - The Interplay between Endogenous and Foodborne Pro-Oxidants and Antioxidants in Shaping Redox Homeostasis.
Jakubek P, Parchem K, Wieckowski MR, Bartoszek A. Jakubek P, et al. Int J Mol Sci. 2024 Jul 17;25(14):7827. doi: 10.3390/ijms25147827. Int J Mol Sci. 2024. PMID: 39063068 Free PMC article. Review. - hSSB1 (NABP2/OBFC2B) is regulated by oxidative stress.
Paquet N, Adams MN, Ashton NW, Touma C, Gamsjaeger R, Cubeddu L, Leong V, Beard S, Bolderson E, Botting CH, O'Byrne KJ, Richard DJ. Paquet N, et al. Sci Rep. 2016 Jun 8;6:27446. doi: 10.1038/srep27446. Sci Rep. 2016. PMID: 27273218 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous