Erythroblast enucleation - PubMed (original) (raw)
Erythroblast enucleation
Ganesan Keerthivasan et al. Stem Cells Int. 2011.
Abstract
Even though the production of orthochromatic erythroblasts can be scaled up to fulfill clinical requirements, enucleation remains one of the critical rate-limiting steps in the production of transfusable red blood cells. Mammalian erythrocytes extrude their nucleus prior to entering circulation, likely to impart flexibility and improve the ability to traverse through capillaries that are half the size of erythrocytes. Recently, there have been many advances in our understanding of the mechanisms underlying mammalian erythrocyte enucleation. This review summarizes these advances, discusses the possible future directions in the field, and evaluates the prospects for improved ex vivo production of red blood cells.
Figures
Figure 1
Key events in cytokinesis and enucleation. Even though the final stages of cytokinesis and enucleation are both driven by vesicle trafficking, the preceding events are substantially different between the two processes.
Figure 2
Model of enucleation. A schematic representation of the enucleation process in mammals is shown. Yellow arrows denote the direction of force applied over the nucleus by actin cytoskeleton. Blue arrows and vesicles denote the protein trafficking, which directs the proteins that are destined to reach the pyrenocyte. The blue membrane adjacent to the nucleus is the part of the pyrenocyte membrane lacking spectrin, glycophorin A, actin cytoskeleton, and other reticulocyte-specific proteins that are differentially sorted. The green arrow represents the direction of the force exerted on the pyrenocyte by a bound macrophage while the red arrow indicates the movement of the reticulocyte away from the center by lamellipodia and filopodia.
Similar articles
- EKLF/KLF1-regulated cell cycle exit is essential for erythroblast enucleation.
Gnanapragasam MN, McGrath KE, Catherman S, Xue L, Palis J, Bieker JJ. Gnanapragasam MN, et al. Blood. 2016 Sep 22;128(12):1631-41. doi: 10.1182/blood-2016-03-706671. Epub 2016 Aug 1. Blood. 2016. PMID: 27480112 Free PMC article. - Tropomodulin 1 controls erythroblast enucleation via regulation of F-actin in the enucleosome.
Nowak RB, Papoin J, Gokhin DS, Casu C, Rivella S, Lipton JM, Blanc L, Fowler VM. Nowak RB, et al. Blood. 2017 Aug 31;130(9):1144-1155. doi: 10.1182/blood-2017-05-787051. Epub 2017 Jul 20. Blood. 2017. PMID: 28729432 Free PMC article. - Absence of erythroblast macrophage protein (Emp) leads to failure of erythroblast nuclear extrusion.
Soni S, Bala S, Gwynn B, Sahr KE, Peters LL, Hanspal M. Soni S, et al. J Biol Chem. 2006 Jul 21;281(29):20181-9. doi: 10.1074/jbc.M603226200. Epub 2006 May 16. J Biol Chem. 2006. PMID: 16707498 - Formation of mammalian erythrocytes: chromatin condensation and enucleation.
Ji P, Murata-Hori M, Lodish HF. Ji P, et al. Trends Cell Biol. 2011 Jul;21(7):409-15. doi: 10.1016/j.tcb.2011.04.003. Epub 2011 May 17. Trends Cell Biol. 2011. PMID: 21592797 Free PMC article. Review. - Phylogenetic and Ontogenetic View of Erythroblastic Islands.
Giger KM, Kalfa TA. Giger KM, et al. Biomed Res Int. 2015;2015:873628. doi: 10.1155/2015/873628. Epub 2015 Oct 18. Biomed Res Int. 2015. PMID: 26557707 Free PMC article. Review.
Cited by
- Heterochromatin rewiring and domain disruption-mediated chromatin compaction during erythropoiesis.
Li D, Wu F, Zhou S, Huang XJ, Lee HY. Li D, et al. Nat Struct Mol Biol. 2023 Apr;30(4):463-474. doi: 10.1038/s41594-023-00939-3. Epub 2023 Mar 13. Nat Struct Mol Biol. 2023. PMID: 36914797 - Establishing a hematopoietic genetic network through locus-specific integration of chromatin regulators.
DeVilbiss AW, Boyer ME, Bresnick EH. DeVilbiss AW, et al. Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):E3398-407. doi: 10.1073/pnas.1302771110. Epub 2013 Aug 19. Proc Natl Acad Sci U S A. 2013. PMID: 23959865 Free PMC article. - Trim58 degrades Dynein and regulates terminal erythropoiesis.
Thom CS, Traxler EA, Khandros E, Nickas JM, Zhou OY, Lazarus JE, Silva AP, Prabhu D, Yao Y, Aribeana C, Fuchs SY, Mackay JP, Holzbaur EL, Weiss MJ. Thom CS, et al. Dev Cell. 2014 Sep 29;30(6):688-700. doi: 10.1016/j.devcel.2014.07.021. Epub 2014 Sep 18. Dev Cell. 2014. PMID: 25241935 Free PMC article. - EKLF/KLF1-regulated cell cycle exit is essential for erythroblast enucleation.
Gnanapragasam MN, McGrath KE, Catherman S, Xue L, Palis J, Bieker JJ. Gnanapragasam MN, et al. Blood. 2016 Sep 22;128(12):1631-41. doi: 10.1182/blood-2016-03-706671. Epub 2016 Aug 1. Blood. 2016. PMID: 27480112 Free PMC article. - Vimentin expression is retained in erythroid cells differentiated from human iPSC and ESC and indicates dysregulation in these cells early in differentiation.
Trakarnsanga K, Ferguson D, Daniels DE, Griffiths RE, Wilson MC, Mordue KE, Gartner A, Andrienko TN, Calvert A, Condie A, McCahill A, Mountford JC, Toye AM, Anstee DJ, Frayne J. Trakarnsanga K, et al. Stem Cell Res Ther. 2019 Apr 29;10(1):130. doi: 10.1186/s13287-019-1231-z. Stem Cell Res Ther. 2019. PMID: 31036072 Free PMC article.
References
- Cohn CS, Cushing MM. Oxygen therapeutics: perfluorocarbons and blood substitute safety. Critical Care Clinics. 2009;25(2):399–414. - PubMed
- World Health Organization, Director-General's Office, Communications Office. Blood safety and donation: a global view. World Health Organization, Geneva, Switzerland, 2004.
- Timmins NE, Nielsen LK. Manufactured RBC—rivers of blood, or an oasis in the desert? Biotechnology Advances. In press. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources