The evolution of gene expression levels in mammalian organs - PubMed (original) (raw)
. 2011 Oct 19;478(7369):343-8.
doi: 10.1038/nature10532.
Magali Soumillon, Anamaria Necsulea, Philippe Julien, Gábor Csárdi, Patrick Harrigan, Manuela Weier, Angélica Liechti, Ayinuer Aximu-Petri, Martin Kircher, Frank W Albert, Ulrich Zeller, Philipp Khaitovich, Frank Grützner, Sven Bergmann, Rasmus Nielsen, Svante Pääbo, Henrik Kaessmann
Affiliations
- PMID: 22012392
- DOI: 10.1038/nature10532
The evolution of gene expression levels in mammalian organs
David Brawand et al. Nature. 2011.
Abstract
Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped by purifying selection, we identify numerous potentially selectively driven expression switches, which occurred at different rates across lineages and tissues and which probably contributed to the specific organ biology of various mammals.
Similar articles
- The molecular evolution of spermatogenesis across mammals.
Murat F, Mbengue N, Winge SB, Trefzer T, Leushkin E, Sepp M, Cardoso-Moreira M, Schmidt J, Schneider C, Mößinger K, Brüning T, Lamanna F, Belles MR, Conrad C, Kondova I, Bontrop R, Behr R, Khaitovich P, Pääbo S, Marques-Bonet T, Grützner F, Almstrup K, Schierup MH, Kaessmann H. Murat F, et al. Nature. 2023 Jan;613(7943):308-316. doi: 10.1038/s41586-022-05547-7. Epub 2022 Dec 21. Nature. 2023. PMID: 36544022 Free PMC article. - Birth and expression evolution of mammalian microRNA genes.
Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, Hu H, Khaitovich P, Kaessmann H. Meunier J, et al. Genome Res. 2013 Jan;23(1):34-45. doi: 10.1101/gr.140269.112. Epub 2012 Oct 3. Genome Res. 2013. PMID: 23034410 Free PMC article. - Mechanisms and evolutionary patterns of mammalian and avian dosage compensation.
Julien P, Brawand D, Soumillon M, Necsulea A, Liechti A, Schütz F, Daish T, Grützner F, Kaessmann H. Julien P, et al. PLoS Biol. 2012;10(5):e1001328. doi: 10.1371/journal.pbio.1001328. Epub 2012 May 15. PLoS Biol. 2012. PMID: 22615540 Free PMC article. - Evolutionary dynamics of coding and non-coding transcriptomes.
Necsulea A, Kaessmann H. Necsulea A, et al. Nat Rev Genet. 2014 Nov;15(11):734-48. doi: 10.1038/nrg3802. Epub 2014 Oct 9. Nat Rev Genet. 2014. PMID: 25297727 Review. - The X factor: X chromosome dosage compensation in the evolutionarily divergent monotremes and marsupials.
Whitworth DJ, Pask AJ. Whitworth DJ, et al. Semin Cell Dev Biol. 2016 Aug;56:117-121. doi: 10.1016/j.semcdb.2016.01.006. Epub 2016 Jan 12. Semin Cell Dev Biol. 2016. PMID: 26806635 Review.
Cited by
- The evolution of lineage-specific regulatory activities in the human embryonic limb.
Cotney J, Leng J, Yin J, Reilly SK, DeMare LE, Emera D, Ayoub AE, Rakic P, Noonan JP. Cotney J, et al. Cell. 2013 Jul 3;154(1):185-96. doi: 10.1016/j.cell.2013.05.056. Cell. 2013. PMID: 23827682 Free PMC article. - Sexual selection drives evolution and rapid turnover of male gene expression.
Harrison PW, Wright AE, Zimmer F, Dean R, Montgomery SH, Pointer MA, Mank JE. Harrison PW, et al. Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4393-8. doi: 10.1073/pnas.1501339112. Epub 2015 Mar 23. Proc Natl Acad Sci U S A. 2015. PMID: 25831521 Free PMC article. - 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary.
Khare T, Pai S, Koncevicius K, Pal M, Kriukiene E, Liutkeviciute Z, Irimia M, Jia P, Ptak C, Xia M, Tice R, Tochigi M, Moréra S, Nazarians A, Belsham D, Wong AH, Blencowe BJ, Wang SC, Kapranov P, Kustra R, Labrie V, Klimasauskas S, Petronis A. Khare T, et al. Nat Struct Mol Biol. 2012 Oct;19(10):1037-43. doi: 10.1038/nsmb.2372. Epub 2012 Sep 9. Nat Struct Mol Biol. 2012. PMID: 22961382 Free PMC article. - COMT gene locus: new functional variants.
Meloto CB, Segall SK, Smith S, Parisien M, Shabalina SA, Rizzatti-Barbosa CM, Gauthier J, Tsao D, Convertino M, Piltonen MH, Slade GD, Fillingim RB, Greenspan JD, Ohrbach R, Knott C, Maixner W, Zaykin D, Dokholyan NV, Reenilä I, Männistö PT, Diatchenko L. Meloto CB, et al. Pain. 2015 Oct;156(10):2072-2083. doi: 10.1097/j.pain.0000000000000273. Pain. 2015. PMID: 26207649 Free PMC article. - Gene coexpression networks reveal key drivers of phenotypic divergence in porcine muscle.
Zhao X, Liu ZY, Liu QX. Zhao X, et al. BMC Genomics. 2015 Feb 5;16(1):50. doi: 10.1186/s12864-015-1238-5. BMC Genomics. 2015. PMID: 25651817 Free PMC article.
References
- Nat Rev Genet. 2008 Sep;9(9):689-98 - PubMed
- Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2957-62 - PubMed
- Proc Natl Acad Sci U S A. 1978 Nov;75(11):5618-22 - PubMed
- Nature. 2010 Apr 1;464(7289):773-7 - PubMed
- Nature. 2005 Sep 1;437(7055):69-87 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources