AFM study of the differential inhibitory effects of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against Gram-positive and Gram-negative bacteria - PubMed (original) (raw)
Comparative Study
doi: 10.1016/j.fm.2011.08.019. Epub 2011 Sep 8.
Affiliations
- PMID: 22029921
- DOI: 10.1016/j.fm.2011.08.019
Comparative Study
AFM study of the differential inhibitory effects of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against Gram-positive and Gram-negative bacteria
Y Cui et al. Food Microbiol. 2012 Feb.
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), a main constituent of tea catechins, affects Gram-positive and Gram-negative bacteria differently; however, the underlying mechanisms are not clearly understood. Atomic force microscopy (AFM) was used to compare morphological alterations in Gram-positive and Gram-negative bacteria induced by EGCG and by H(2)O(2) at sub-minimum inhibitory concentrations (MICs). EGCG initially induced aggregates in the cell envelopes of Staphylococcus aureus and eventually caused cell lysis, which was not observed in cells treated with H(2)O(2). It initially induced nanoscale perforations or microscale grooves in the cell envelopes of Escherichia coli O157:H7 which eventually disappeared, similar to E. coli cells treated with H(2)O(2). An E. coli O157:H7 tpx mutant, with a defect in thioredoxin-dependent thiol peroxidase (Tpx), was more severely damaged by EGCG when compared with its wild type. Similar differing effects were observed in other Gram-positive and Gram-negative bacteria when exposed to EGCG; it caused aggregated in Streptococcus mutans, while it caused grooves in Pseudomonas aeruginosa. AFM results suggest that the major morphological changes of Gram-negative bacterial cell walls induced by EGCG depend on H(2)O(2) release. This is not the case for Gram-positive bacteria. Oxidative stress in Gram-negative bacteria induced by EGCG was confirmed by flow cytometry.
Copyright © 2011 Elsevier Ltd. All rights reserved.
Similar articles
- Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea.
Steinmann J, Buer J, Pietschmann T, Steinmann E. Steinmann J, et al. Br J Pharmacol. 2013 Mar;168(5):1059-73. doi: 10.1111/bph.12009. Br J Pharmacol. 2013. PMID: 23072320 Free PMC article. Review. - Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans.
Abbas S, Wink M. Abbas S, et al. Planta Med. 2009 Feb;75(3):216-21. doi: 10.1055/s-0028-1088378. Epub 2008 Dec 11. Planta Med. 2009. PMID: 19085685 - Green tea extract and (-)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities.
Elbling L, Weiss RM, Teufelhofer O, Uhl M, Knasmueller S, Schulte-Hermann R, Berger W, Micksche M. Elbling L, et al. FASEB J. 2005 May;19(7):807-9. doi: 10.1096/fj.04-2915fje. Epub 2005 Feb 28. FASEB J. 2005. PMID: 15738004 - In vitro cytotoxicity of epigallocatechin gallate and tea extracts to cancerous and normal cells from the human oral cavity.
Weisburg JH, Weissman DB, Sedaghat T, Babich H. Weisburg JH, et al. Basic Clin Pharmacol Toxicol. 2004 Oct;95(4):191-200. doi: 10.1111/j.1742-7843.2004.pto_950407.x. Basic Clin Pharmacol Toxicol. 2004. PMID: 15504155 - Targeting polyamines and biogenic amines by green tea epigallocatechin-3-gallate.
Melgarejo E, Urdiales JL, Sánchez-Jiménez F, Medina MA. Melgarejo E, et al. Amino Acids. 2010 Feb;38(2):519-23. doi: 10.1007/s00726-009-0411-z. Epub 2009 Dec 3. Amino Acids. 2010. PMID: 19956995 Review.
Cited by
- Location and Effects of an Antitumoral Catechin on the Structural Properties of Phosphatidylethanolamine Membranes.
Casado F, Teruel JA, Casado S, Ortiz A, Rodríguez-López JN, Aranda FJ. Casado F, et al. Molecules. 2016 Jun 24;21(7):829. doi: 10.3390/molecules21070829. Molecules. 2016. PMID: 27347914 Free PMC article. - Effect of Gum Tragacanth-Sodium Alginate Active Coatings Incorporated With Epigallocatechin Gallate and Lysozyme on the Quality of Large Yellow Croaker at Superchilling Condition.
Pei J, Mei J, Yu H, Qiu W, Xie J. Pei J, et al. Front Nutr. 2022 Jan 18;8:812741. doi: 10.3389/fnut.2021.812741. eCollection 2021. Front Nutr. 2022. PMID: 35118111 Free PMC article. - Eco-Friendly Peelable Active Nanocomposite Films Designed for Biological and Chemical Warfare Agents Decontamination.
Toader G, Diacon A, Rotariu T, Alexandru M, Rusen E, Ginghină RE, Alexe F, Oncioiu R, Zorila FL, Podaru A, Moldovan AE, Pulpea D, Gavrilă AM, Iordache TV, Șomoghi R. Toader G, et al. Polymers (Basel). 2021 Nov 19;13(22):3999. doi: 10.3390/polym13223999. Polymers (Basel). 2021. PMID: 34833298 Free PMC article. - An Iron Shield to Protect Epigallocatehin-3-Gallate from Degradation: Multifunctional Self-Assembled Iron Oxide Nanocarrier Enhances Protein Kinase CK2 Intracellular Targeting and Inhibition.
Fasolato L, Magro M, Cozza G, Sbarra F, Molinari S, Novelli E, Vianello F, Venerando A. Fasolato L, et al. Pharmaceutics. 2021 Aug 16;13(8):1266. doi: 10.3390/pharmaceutics13081266. Pharmaceutics. 2021. PMID: 34452227 Free PMC article. - Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea.
Steinmann J, Buer J, Pietschmann T, Steinmann E. Steinmann J, et al. Br J Pharmacol. 2013 Mar;168(5):1059-73. doi: 10.1111/bph.12009. Br J Pharmacol. 2013. PMID: 23072320 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous