Overview of base excision repair biochemistry - PubMed (original) (raw)
Review
Overview of base excision repair biochemistry
Yun-Jeong Kim et al. Curr Mol Pharmacol. 2012 Jan.
Abstract
Base excision repair (BER) is an evolutionarily conserved pathway, which could be considered the "workhorse" repair mechanism of the cell. In particular, BER corrects most forms of spontaneous hydrolytic decay products in DNA, as well as everyday oxidative and alkylative modifications to bases or the sugar phosphate backbone. The repair response involves five key enzymatic steps that aim to remove the initial DNA lesion and restore the genetic material back to its original state: (i) excision of a damaged or inappropriate base, (ii) incision of the phosphodiester backbone at the resulting abasic site, (iii) termini clean-up to permit unabated repair synthesis and/or nick ligation, (iv) gap-filling to replace the excised nucleotide, and (v) sealing of the final, remaining DNA nick. These repair steps are executed by a collection of enzymes that include DNA glycosylases, apurinic/apyrimidinic endonucleases, phosphatases, phosphodiesterases, kinases, polymerases and ligases. Defects in BER components lead to reduced cell survival, elevated mutation rates, and DNA-damaging agent hypersensitivities. In addition, the pathway plays a significant role in determining cellular responsiveness to relevant clinical anti-cancer agents, such as alkylators (e.g. temozolomide), nucleoside analogs (e.g. 5-fluorouracil), and ionizing radiation. The molecular details of BER and the contribution of the pathway to therapeutic agent resistance are reviewed herein.
Figures
Figure 1
Human BER pathways
Similar articles
- A chemical and kinetic perspective on base excision repair of DNA.
Schermerhorn KM, Delaney S. Schermerhorn KM, et al. Acc Chem Res. 2014 Apr 15;47(4):1238-46. doi: 10.1021/ar400275a. Epub 2014 Mar 19. Acc Chem Res. 2014. PMID: 24646203 Free PMC article. - Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells.
Hegde ML, Hazra TK, Mitra S. Hegde ML, et al. Cell Res. 2008 Jan;18(1):27-47. doi: 10.1038/cr.2008.8. Cell Res. 2008. PMID: 18166975 Free PMC article. Review. - Modulation of the Apurinic/Apyrimidinic Endonuclease Activity of Human APE1 and of Its Natural Polymorphic Variants by Base Excision Repair Proteins.
Kladova OA, Alekseeva IV, Saparbaev M, Fedorova OS, Kuznetsov NA. Kladova OA, et al. Int J Mol Sci. 2020 Sep 28;21(19):7147. doi: 10.3390/ijms21197147. Int J Mol Sci. 2020. PMID: 32998246 Free PMC article. - Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps.
Srivastava DK, Berg BJ, Prasad R, Molina JT, Beard WA, Tomkinson AE, Wilson SH. Srivastava DK, et al. J Biol Chem. 1998 Aug 14;273(33):21203-9. doi: 10.1074/jbc.273.33.21203. J Biol Chem. 1998. PMID: 9694877 - Single-molecule studies of repair proteins in base excision repair.
Lee D, Lee G. Lee D, et al. BMB Rep. 2025 Jan;58(1):17-23. doi: 10.5483/BMBRep.2024-0178. BMB Rep. 2025. PMID: 39701025 Free PMC article. Review.
Cited by
- DNA Damage and Oxidative Stress of Tobacco Smoke Condensate in Human Bladder Epithelial Cells.
Bellamri M, Walmsley SJ, Brown C, Brandt K, Konorev D, Day A, Wu CF, Wu MT, Turesky RJ. Bellamri M, et al. Chem Res Toxicol. 2022 Oct 17;35(10):1863-1880. doi: 10.1021/acs.chemrestox.2c00153. Epub 2022 Jul 25. Chem Res Toxicol. 2022. PMID: 35877975 Free PMC article. - Mouse Embryonic Fibroblasts Isolated From Nthl1 D227Y Knockin Mice Exhibit Defective DNA Repair and Increased Genome Instability.
Marsden CG, Das L, Nottoli TP, Kathe SD, Doublié S, Wallace SS, Sweasy JB. Marsden CG, et al. DNA Repair (Amst). 2022 Jan;109:103247. doi: 10.1016/j.dnarep.2021.103247. Epub 2021 Nov 17. DNA Repair (Amst). 2022. PMID: 34826736 Free PMC article. - Zinc finger oxidation of Fpg/Nei DNA glycosylases by 2-thioxanthine: biochemical and X-ray structural characterization.
Biela A, Coste F, Culard F, Guerin M, Goffinont S, Gasteiger K, Cieśla J, Winczura A, Kazimierczuk Z, Gasparutto D, Carell T, Tudek B, Castaing B. Biela A, et al. Nucleic Acids Res. 2014;42(16):10748-61. doi: 10.1093/nar/gku613. Epub 2014 Aug 20. Nucleic Acids Res. 2014. PMID: 25143530 Free PMC article. - Overexpression of the base excision repair NTHL1 glycosylase causes genomic instability and early cellular hallmarks of cancer.
Limpose KL, Trego KS, Li Z, Leung SW, Sarker AH, Shah JA, Ramalingam SS, Werner EM, Dynan WS, Cooper PK, Corbett AH, Doetsch PW. Limpose KL, et al. Nucleic Acids Res. 2018 May 18;46(9):4515-4532. doi: 10.1093/nar/gky162. Nucleic Acids Res. 2018. PMID: 29522130 Free PMC article. - Simultaneous sensitive detection of multiple DNA glycosylases from lung cancer cells at the single-molecule level.
Hu J, Liu MH, Li Y, Tang B, Zhang CY. Hu J, et al. Chem Sci. 2017 Nov 7;9(3):712-720. doi: 10.1039/c7sc04296e. eCollection 2018 Jan 21. Chem Sci. 2017. PMID: 29629140 Free PMC article.
References
- Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–715. - PubMed
- Gelfand CA, Plum GE, Grollman AP, Johnson F, Breslauer KJ. Thermodynamic consequences of an abasic lesion in duplex DNA are strongly dependent on base sequence. Biochemistry. 1998;37:7321–7327. - PubMed
- Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991;349:431–434. - PubMed
- Grollman AP, Moriya M. Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet. 1993;9:246–249. - PubMed
- Tretyakova NY, Niles JC, Burney S, Wishnok JS, Tannenbaum SR. Peroxynitrite-induced reactions of synthetic oligonucleotides containing 8-oxoguanine. Chem Res Toxicol. 1999;12:459–466. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous