Overview of base excision repair biochemistry - PubMed (original) (raw)

Review

Overview of base excision repair biochemistry

Yun-Jeong Kim et al. Curr Mol Pharmacol. 2012 Jan.

Abstract

Base excision repair (BER) is an evolutionarily conserved pathway, which could be considered the "workhorse" repair mechanism of the cell. In particular, BER corrects most forms of spontaneous hydrolytic decay products in DNA, as well as everyday oxidative and alkylative modifications to bases or the sugar phosphate backbone. The repair response involves five key enzymatic steps that aim to remove the initial DNA lesion and restore the genetic material back to its original state: (i) excision of a damaged or inappropriate base, (ii) incision of the phosphodiester backbone at the resulting abasic site, (iii) termini clean-up to permit unabated repair synthesis and/or nick ligation, (iv) gap-filling to replace the excised nucleotide, and (v) sealing of the final, remaining DNA nick. These repair steps are executed by a collection of enzymes that include DNA glycosylases, apurinic/apyrimidinic endonucleases, phosphatases, phosphodiesterases, kinases, polymerases and ligases. Defects in BER components lead to reduced cell survival, elevated mutation rates, and DNA-damaging agent hypersensitivities. In addition, the pathway plays a significant role in determining cellular responsiveness to relevant clinical anti-cancer agents, such as alkylators (e.g. temozolomide), nucleoside analogs (e.g. 5-fluorouracil), and ionizing radiation. The molecular details of BER and the contribution of the pathway to therapeutic agent resistance are reviewed herein.

PubMed Disclaimer

Figures

Figure 1

Figure 1

Human BER pathways

References

    1. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–715. - PubMed
    1. Gelfand CA, Plum GE, Grollman AP, Johnson F, Breslauer KJ. Thermodynamic consequences of an abasic lesion in duplex DNA are strongly dependent on base sequence. Biochemistry. 1998;37:7321–7327. - PubMed
    1. Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991;349:431–434. - PubMed
    1. Grollman AP, Moriya M. Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet. 1993;9:246–249. - PubMed
    1. Tretyakova NY, Niles JC, Burney S, Wishnok JS, Tannenbaum SR. Peroxynitrite-induced reactions of synthetic oligonucleotides containing 8-oxoguanine. Chem Res Toxicol. 1999;12:459–466. - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources