Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data - PubMed (original) (raw)
Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data
Valentina Boeva et al. Bioinformatics. 2012.
Abstract
Summary: More and more cancer studies use next-generation sequencing (NGS) data to detect various types of genomic variation. However, even when researchers have such data at hand, single-nucleotide polymorphism arrays have been considered necessary to assess copy number alterations and especially loss of heterozygosity (LOH). Here, we present the tool Control-FREEC that enables automatic calculation of copy number and allelic content profiles from NGS data, and consequently predicts regions of genomic alteration such as gains, losses and LOH. Taking as input aligned reads, Control-FREEC constructs copy number and B-allele frequency profiles. The profiles are then normalized, segmented and analyzed in order to assign genotype status (copy number and allelic content) to each genomic region. When a matched normal sample is provided, Control-FREEC discriminates somatic from germline events. Control-FREEC is able to analyze overdiploid tumor samples and samples contaminated by normal cells. Low mappability regions can be excluded from the analysis using provided mappability tracks.
Availability: C++ source code is available at: http://bioinfo.curie.fr/projects/freec/
Contact: freec@curie.fr
Supplementary information: Supplementary data are available at Bioinformatics online.
Figures
Fig. 1.
Control-FREEC calculates copy number and BAF profiles and detects regions of copy number gain/loss and LOH regions. Tumor chromosomes 17 and 19 (bottom panels) versus ‘normal’ chromosomes (top panels; unpublished data). Predicted BAF and copy number profiles are shown in black. Gains, losses (left panels) and LOH (right panels) are shown in red, blue and light blue, respectively.
Similar articles
- Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization.
Boeva V, Zinovyev A, Bleakley K, Vert JP, Janoueix-Lerosey I, Delattre O, Barillot E. Boeva V, et al. Bioinformatics. 2011 Jan 15;27(2):268-9. doi: 10.1093/bioinformatics/btq635. Epub 2010 Nov 15. Bioinformatics. 2011. PMID: 21081509 Free PMC article. - Control-FREEC viewer: a tool for the visualization and exploration of copy number variation data.
Crippa V, Fina E, Ramazzotti D, Piazza R. Crippa V, et al. BMC Bioinformatics. 2024 Feb 14;25(1):72. doi: 10.1186/s12859-024-05694-w. BMC Bioinformatics. 2024. PMID: 38355453 Free PMC article. - Genome-Wide Copy Number Variation Detection Using NGS: Data Analysis and Interpretation.
Shen W, Szankasi P, Durtschi J, Kelley TW, Xu X. Shen W, et al. Methods Mol Biol. 2019;1908:113-124. doi: 10.1007/978-1-4939-9004-7_8. Methods Mol Biol. 2019. PMID: 30649724 - Effective normalization for copy number variation detection from whole genome sequencing.
Janevski A, Varadan V, Kamalakaran S, Banerjee N, Dimitrova N. Janevski A, et al. BMC Genomics. 2012;13 Suppl 6(Suppl 6):S16. doi: 10.1186/1471-2164-13-S6-S16. Epub 2012 Oct 26. BMC Genomics. 2012. PMID: 23134596 Free PMC article. - CLImAT: accurate detection of copy number alteration and loss of heterozygosity in impure and aneuploid tumor samples using whole-genome sequencing data.
Yu Z, Liu Y, Shen Y, Wang M, Li A. Yu Z, et al. Bioinformatics. 2014 Sep 15;30(18):2576-83. doi: 10.1093/bioinformatics/btu346. Epub 2014 May 19. Bioinformatics. 2014. PMID: 24845652 Free PMC article.
Cited by
- Diagnostic challenges in complicated case of glioblastoma.
Aghova T, Lhotska H, Lizcova L, Svobodova K, Hodanova L, Janeckova K, Vucinic K, Gregor M, Konecna D, Kramar F, Soukup J, Netuka D, Zemanova Z. Aghova T, et al. Pathol Oncol Res. 2024 Oct 29;30:1611875. doi: 10.3389/pore.2024.1611875. eCollection 2024. Pathol Oncol Res. 2024. PMID: 39534304 Free PMC article. - Identification of candidate genes associating with soybean cyst nematode in soybean (Glycine max L.) using BSA-seq.
Hu H, Yi L, Wu D, Zhang L, Zhou X, Wu Y, Shi H, Wei Y, Hou J. Hu H, et al. PeerJ. 2024 Oct 21;12:e18252. doi: 10.7717/peerj.18252. eCollection 2024. PeerJ. 2024. PMID: 39465172 Free PMC article. - Comparative analysis of methodologies for detecting extrachromosomal circular DNA.
Gao X, Liu K, Luo S, Tang M, Liu N, Jiang C, Fang J, Li S, Hou Y, Guo C, Qu K. Gao X, et al. Nat Commun. 2024 Oct 25;15(1):9208. doi: 10.1038/s41467-024-53496-8. Nat Commun. 2024. PMID: 39448595 Free PMC article. - Mutational Landscape of Gastric Adenocarcinoma of the Fundic Gland Type Revealed by Whole Genome Sequencing.
Wei H, Chen ZM, Xue XF, Xia Xi L, Yang GH, Zhai ZY, Huang ZY, Zhou P, Bao CJ, You LJ, Ou Yang MP, Xia GL, Zeng ZY, Cui XB, Pei XJ, Gong W. Wei H, et al. Cancer Med. 2024 Oct;13(19):e70290. doi: 10.1002/cam4.70290. Cancer Med. 2024. PMID: 39382261 Free PMC article. - Ovarian Cancer Patient-Derived Organoids Used as a Model for Replicating Genetic Characteristics and Testing Drug Responsiveness: A Preliminary Study.
Chang YH, Wu KC, Wang KH, Ding DC. Chang YH, et al. Cell Transplant. 2024 Jan-Dec;33:9636897241281869. doi: 10.1177/09636897241281869. Cell Transplant. 2024. PMID: 39323050 Free PMC article.
References
- Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674. - PubMed
- Harchaoui Z., Lévy-Leduc C. Catching change-points with lasso. Adv. Neural Inform. Process. Syst. 2008;22:617–624.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources