Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation - PubMed (original) (raw)
. 2011 Dec 11;481(7380):204-8.
doi: 10.1038/nature10690.
Xiaojun Ding, Jixin Cui, Hao Xu, Jing Chen, Yi-Nan Gong, Liyan Hu, Yan Zhou, Jianning Ge, Qiuhe Lu, Liping Liu, She Chen, Feng Shao
Affiliations
- PMID: 22158122
- DOI: 10.1038/nature10690
Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation
Li Zhang et al. Nature. 2011.
Abstract
NF-κB is crucial for innate immune defence against microbial infection. Inhibition of NF-κB signalling has been observed with various bacterial infections. The NF-κB pathway critically requires multiple ubiquitin-chain signals of different natures. The question of whether ubiquitin-chain signalling and its specificity in NF-κB activation are regulated during infection, and how this regulation takes place, has not been explored. Here we show that human TAB2 and TAB3, ubiquitin-chain sensory proteins involved in NF-κB signalling, are directly inactivated by enteropathogenic Escherichia coli NleE, a conserved bacterial type-III-secreted effector responsible for blocking host NF-κB signalling. NleE harboured an unprecedented S-adenosyl-l-methionine-dependent methyltransferase activity that specifically modified a zinc-coordinating cysteine in the Npl4 zinc finger (NZF) domains in TAB2 and TAB3. Cysteine-methylated TAB2-NZF and TAB3-NZF (truncated proteins only comprising the NZF domain) lost the zinc ion as well as the ubiquitin-chain binding activity. Ectopically expressed or type-III-secretion-system-delivered NleE methylated TAB2 and TAB3 in host cells and diminished their ubiquitin-chain binding activity. Replacement of the NZF domain of TAB3 with the NleE methylation-insensitive Npl4 NZF domain resulted in NleE-resistant NF-κB activation. Given the prevalence of zinc-finger motifs and activation of cysteine thiol by zinc binding, methylation of zinc-finger cysteine might regulate other eukaryotic pathways in addition to NF-κB signalling.
Similar articles
- Identification of a Distinct Substrate-binding Domain in the Bacterial Cysteine Methyltransferase Effectors NleE and OspZ.
Zhang Y, Mühlen S, Oates CV, Pearson JS, Hartland EL. Zhang Y, et al. J Biol Chem. 2016 Sep 16;291(38):20149-62. doi: 10.1074/jbc.M116.734079. Epub 2016 Jul 21. J Biol Chem. 2016. PMID: 27445336 Free PMC article. - Structure and specificity of the bacterial cysteine methyltransferase effector NleE suggests a novel substrate in human DNA repair pathway.
Yao Q, Zhang L, Wan X, Chen J, Hu L, Ding X, Li L, Karar J, Peng H, Chen S, Huang N, Rauscher FJ 3rd, Shao F. Yao Q, et al. PLoS Pathog. 2014 Nov 20;10(11):e1004522. doi: 10.1371/journal.ppat.1004522. eCollection 2014 Nov. PLoS Pathog. 2014. PMID: 25412445 Free PMC article. - Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3.
Sato Y, Yoshikawa A, Yamashita M, Yamagata A, Fukai S. Sato Y, et al. EMBO J. 2009 Dec 16;28(24):3903-9. doi: 10.1038/emboj.2009.345. EMBO J. 2009. PMID: 19927120 Free PMC article. - ABINs: A20 binding inhibitors of NF-kappa B and apoptosis signaling.
Verstrepen L, Carpentier I, Verhelst K, Beyaert R. Verstrepen L, et al. Biochem Pharmacol. 2009 Jul 15;78(2):105-14. doi: 10.1016/j.bcp.2009.02.009. Epub 2009 Feb 27. Biochem Pharmacol. 2009. PMID: 19464428 Review. - The biology of A20-binding inhibitors of NF-kappaB activation (ABINs).
Verstrepen L, Carpentier I, Beyaert R. Verstrepen L, et al. Adv Exp Med Biol. 2014;809:13-31. doi: 10.1007/978-1-4939-0398-6_2. Adv Exp Med Biol. 2014. PMID: 25302363 Review.
Cited by
- Modulation of host signaling in the inflammatory response by enteropathogenic Escherichia coli virulence proteins.
Zhuang X, Chen Z, He C, Wang L, Zhou R, Yan D, Ge B. Zhuang X, et al. Cell Mol Immunol. 2017 Mar;14(3):237-244. doi: 10.1038/cmi.2016.52. Epub 2016 Oct 31. Cell Mol Immunol. 2017. PMID: 27796284 Free PMC article. Review. - Dissecting ribosomal particles throughout the kingdoms of life using advanced hybrid mass spectrometry methods.
van de Waterbeemd M, Tamara S, Fort KL, Damoc E, Franc V, Bieri P, Itten M, Makarov A, Ban N, Heck AJR. van de Waterbeemd M, et al. Nat Commun. 2018 Jun 27;9(1):2493. doi: 10.1038/s41467-018-04853-x. Nat Commun. 2018. PMID: 29950687 Free PMC article. - Bacterial effectors and their functions in the ubiquitin-proteasome system: insight from the modes of substrate recognition.
Kim M, Otsubo R, Morikawa H, Nishide A, Takagi K, Sasakawa C, Mizushima T. Kim M, et al. Cells. 2014 Aug 18;3(3):848-64. doi: 10.3390/cells3030848. Cells. 2014. PMID: 25257025 Free PMC article. Review. - LUBAC promotes angiogenesis and lung tumorigenesis by ubiquitinating and antagonizing autophagic degradation of HIF1α.
Jin Y, Peng Y, Xu J, Yuan Y, Yang N, Zhang Z, Xu L, Li L, Xiong Y, Sun D, Pan Y, Wu R, Fu J. Jin Y, et al. Oncogenesis. 2024 Jan 25;13(1):6. doi: 10.1038/s41389-024-00508-3. Oncogenesis. 2024. PMID: 38272870 Free PMC article. - Bacterial Toxin and Effector Regulation of Intestinal Immune Signaling.
Woida PJ, Satchell KJF. Woida PJ, et al. Front Cell Dev Biol. 2022 Feb 16;10:837691. doi: 10.3389/fcell.2022.837691. eCollection 2022. Front Cell Dev Biol. 2022. PMID: 35252199 Free PMC article. Review.
References
- Annu Rev Biochem. 2009;78:769-96 - PubMed
- J Immunol. 2010 Oct 1;185(7):4118-27 - PubMed
- Annu Rev Immunol. 2009;27:693-733 - PubMed
- J Biol Chem. 2003 May 30;278(22):20225-34 - PubMed
- Nature. 2011 Mar 31;471(7340):637-41 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous